Kelvin water dropper

Last updated

The Kelvin water dropper, invented by Scottish scientist William Thomson (Lord Kelvin) in 1867, [1] is a type of electrostatic generator. Kelvin referred to the device as his water-dropping condenser. The apparatus is variously called the Kelvin hydroelectric generator, the Kelvin electrostatic generator, or Lord Kelvin's thunderstorm. The device uses falling water to generate voltage differences by electrostatic induction occurring between interconnected, oppositely charged systems. This eventually leads to an electric arc discharging in the form of a spark. It is used in physics education to demonstrate the principles of electrostatics.

Contents

Fig. 1: Schematic setup for the Kelvin water dropper. Kelvin water dropper.svg
Fig. 1: Schematic setup for the Kelvin water dropper.

Description

A typical setup is shown in Fig. 1. A reservoir of water or other conducting liquid (top, grey) is connected to two hoses that release two falling streams of drops, which land in two buckets or containers (bottom, blue and red). Each stream passes (without touching) through a metal ring or open cylinder which is electrically connected to the opposite receiving container; the left ring (red) is connected to the right bucket, while the right ring (blue) is connected to the left bucket. The containers must be electrically insulated from each other and from electrical ground. Similarly, the rings must be electrically isolated from each other and their environment. The streams must break into separate droplets before reaching the containers. Typically, the containers are made of metal and the rings are connected to them by wires.

The simple construction makes this device popular in physics education as a laboratory experiment for students.

Principles of operation

Kelvin water-dropper electrostatic generator.png
A 1918 version of the machine.
Kelvin water dropper-original 1867 drawing.png
Kelvin's original 1867 drawing.
Kelvin water dropper electrostatic machine model.jpg
Replica of machine sold for educational use.
In Kelvin's original machine, instead of buckets, after falling through the charging electrodes the drops fall into metal funnels which collect the charge but let the water through. The charge is stored in two Leyden jar capacitors (large cylindrical objects)

A small initial difference in electric charge between the two buckets, which always exists because the buckets are insulated from each other, is necessary to begin the charging process. Suppose, therefore, that the right bucket has a small positive charge. Now the left ring also has some positive charge because it is connected to the bucket. The charge on the left ring will attract negative charges in the water (ions) into the left-hand stream by the Coulomb electrostatic attraction. When a drop breaks off the end of the left-hand stream, the drop carries a negative charge with it. When the negatively charged water drop falls into its bucket (the left one), it gives that bucket and the attached ring (the right one) a negative charge.

Once the right ring has a negative charge, it similarly attracts positive charge into the right-hand stream. When drops break off the end of that stream, they carry positive charge to the positively charged bucket, making that bucket even more positively charged.

Thus positive charges are attracted to the right-hand stream by the ring, and positive charge drips into the positively charged right bucket. Negative charges are attracted to the left-hand stream and negative charge drips into the negatively charged left bucket. This process of charge separation that occurs in the water is called electrostatic induction . The higher the charge that accumulates in each bucket, the higher the electrical potential on the rings and the more effective this process of electrostatic induction is. [2] During the induction process, there is an electric current that flows in the form of positive or negative ions in the water of the supply lines. This is separate from the bulk flow of water that falls through the rings and breaks into droplets on the way to the containers. For example, as water approaches the negatively charged ring on the right, any free electrons in the water can easily flee toward the left, against the flow of water.

Eventually, when both buckets have become highly charged, several different effects may be seen. An electric spark may briefly arc between the two buckets or rings, decreasing the charge on each bucket. If there is a steady stream of water through the rings, and if the streams are not perfectly centered in the rings, one can observe the deflection of the streams prior to each spark due to the electrostatic attraction via Coulomb's law of opposite charges. [3] As charging increases, a smooth and steady stream may fan out due to self-repulsion of the net charges in the stream. If the water flow is set such that it breaks into droplets in the vicinity of the rings, the drops may be attracted to the rings enough to touch the rings and deposit their charge on the oppositely charged rings, which decreases the charge on that side of the system. In that case also, the buckets will start to electrostatically repel the droplets falling towards them, and may fling the droplets away from the buckets. Each of these effects will limit the voltage that can be reached by the device. The voltages reached by this device can be in the range of kilovolts, but the amounts of charge are small, so there is no more danger to persons than that of static electrical discharges produced by shuffling feet on a carpet, for example.

The opposite charges which build up on the buckets represent electrical potential energy, as shown by the energy released as light and heat when a spark passes between them. This energy comes from the gravitational potential energy released when the water falls. The charged falling water drops do work against the opposing electric field of the like-charged containers, which exerts an upward force against them, converting gravitational potential energy into electrical potential energy, plus motional kinetic energy. The kinetic energy is wasted as heat when the water drops land in the buckets, so when considered as an electric power generator the Kelvin machine is very inefficient. However, the principle of operation is the same as with other forms of hydroelectric power. As always, energy is conserved.

Details

Fig. 3: A Kelvin water dropper set up at the 2014 Cambridge Science Festival Cmglee Kelvin water dropper Cambridge Science Festival.jpg
Fig. 3: A Kelvin water dropper set up at the 2014 Cambridge Science Festival

If the buckets are metal conductors, then the built-up charge resides on the outside of the metal, not in the water. This is part of the electrical induction process, and is an example of the related "Faraday's ice bucket". Also, the idea of bringing small amounts of charge into the center of a large metal object with a large net charge, as happens in Kelvin's water dropper, relies on the same physics as in the operation of a van de Graaff generator.

The discussion above is in terms of charged droplets falling. The inductive charging effects occur while the water stream is continuous. This is because the flow and separation of charge occurs already when the streams of water approach the rings, so that when the water passes through the rings there is already net charge on the water. When drops form, some net charge is trapped on each drop as gravity pulls it toward the like-charged container.

When the containers are metal, the wires may be attached to the metal. Otherwise, the container-end of each wire must dip into the water. In the latter case, the charge resides on the surface of the water, not outside of the containers.

The apparatus can be extended to more than two streams of droplets. [4]

In 2013, a combined group from the University of Twente (the Netherlands) constructed a microfluidic version of the Kelvin water dropper, which yields electrical voltages able to charge, deform and break water droplets of micrometric size by just using pneumatic force instead of gravity. [5] A year later, they developed another version of a microfluidic Kelvin water dropper, [6] using a microscale liquid jet (which then broke into microdroplets) shot onto a metal target, which yielded a maximum 48% efficiency. [7]

Historical background

In De Magnete , published in 1600, William Gilbert included studies of static electricity produced by amber and its interaction with water. He observed the formation of conical structures on water which are commonly now called Taylor cones.

Other early studies noting the interaction of static electricity with water and reported in the English language include:

By the 1840s it was able to be demonstrated that streams of water could carry electric charge, that streams carrying like charge were repelled and that streams carrying unlike charge were attracted. [8] It could also be demonstrated that physical charge separation, that is, separation of charge into different regions, could be induced in a body of water by a static electric field.

Lord Kelvin used this foundation of accumulated knowledge to, in 1859, create an apparatus involving the interaction of a stream of water with the Earth's static electric field to cause charge separation and subsequent measurement of charge to make atmospheric electricity measurements. [9]

Experimental studies

Investigations of the Kelvin electrostatic generator under various controlled conditions showed that it operated with tap water, distilled water (non-deionised) and a saturated solution of NaCl. [10] It was also found that the generator worked well even if the two liquid streams originate from different electrically insulated reservoirs. A model was proposed in which the electric charge results from the separation of the positive aqueous hydrogen ion and the negative aqueous hydroxyl ion as the water droplets form.

Related Research Articles

<span class="mw-page-title-main">Electricity</span> Phenomena related to electric charge

Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.

<span class="mw-page-title-main">Electric charge</span> Electromagnetic property of matter

Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be positive or negative. Like charges repel each other and unlike charges attract each other. An object with no net charge is referred to as electrically neutral. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that do not require consideration of quantum effects.

<span class="mw-page-title-main">Voltage</span> Difference in electric potential between two points in space

Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to move a positive test charge from the first point to the second point. In the International System of Units (SI), the derived unit for voltage is the volt (V).

<span class="mw-page-title-main">Van de Graaff generator</span> Electrostatic particle accelerator operating on the triboelectric effect

A Van de Graaff generator is an electrostatic generator which uses a moving belt to accumulate electric charge on a hollow metal globe on the top of an insulated column, creating very high electric potentials. It produces very high voltage direct current (DC) electricity at low current levels. It was invented by American physicist Robert J. Van de Graaff in 1929. The potential difference achieved by modern Van de Graaff generators can be as much as 5 megavolts. A tabletop version can produce on the order of 100 kV and can store enough energy to produce visible electric sparks. Small Van de Graaff machines are produced for entertainment, and for physics education to teach electrostatics; larger ones are displayed in some science museums.

<span class="mw-page-title-main">Triboelectric effect</span> Charge transfer due to contact or sliding

The triboelectric effect describes electric charge transfer between two objects when they contact or slide against each other. It can occur with different materials, such as the sole of a shoe on a carpet, or between two pieces of the same material. It is ubiquitous, and occurs with differing amounts of charge transfer (tribocharge) for all solid materials. There is evidence that tribocharging can occur between combinations of solids, liquids and gases, for instance liquid flowing in a solid tube or an aircraft flying through air.

<span class="mw-page-title-main">Electromotive force</span> Electrical action produced by a non-electrical source

In electromagnetism and electronics, electromotive force is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical transducers provide an emf by converting other forms of energy into electrical energy. Other electrical equipment also produce an emf, such as batteries, which convert chemical energy, and generators, which convert mechanical energy. This energy conversion is achieved by physical forces applying physical work on electric charges. However, electromotive force itself is not a physical force, and ISO/IEC standards have deprecated the term in favor of source voltage or source tension instead.

<span class="mw-page-title-main">Electrostatic discharge</span> Sudden flow of electric current between two electrically charged objects by contact

Electrostatic discharge (ESD) is a sudden and momentary flow of electric current between two differently-charged objects when brought close together or when the dielectric between them breaks down, often creating a visible spark associated with the static electricity between the objects.

<span class="mw-page-title-main">Electric generator</span> Device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motion-based power or fuel-based power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all the power for electrical grids.

<span class="mw-page-title-main">Wimshurst machine</span> Electrostatic generator

The Wimshurst machine or Wimshurst influence machine is an electrostatic generator, a machine for generating high voltages developed between 1880 and 1883 by British inventor James Wimshurst (1832–1903).

<span class="mw-page-title-main">Static electricity</span> Imbalance of electric charges within or on the surface of a material

Static electricity is an imbalance of electric charges within or on the surface of a material. The charge remains until it can move away by an electric current or electrical discharge. The word "static" is used to differentiate it from current electricity, where an electric charge flows through an electrical conductor.

<span class="mw-page-title-main">Electrophorus</span> Simple electrostatic generator invented in 1762

In electromagnetism, an electrophorus or electrophore is a simple, manual, capacitive, electrostatic generator used to produce charge via the process of electrostatic induction. A first version of it was invented in 1762 by Swedish professor Johan Carl Wilcke. Italian scientist Alessandro Volta improved and popularized the device in 1775, and is sometimes erroneously credited with its invention. The word electrophorus was coined by Volta from the Greek ήλεκτρον, elektron, and φορεύς, phoreus, meaning 'electricity bearer'.

<span class="mw-page-title-main">Corona discharge</span> Ionization of air around a high-voltage conductor

A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the electric field around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same mechanism as a gas discharge lamp. Corona discharges can also happen in weather, such as thunderstorms, where objects like ship masts or airplane wings have a charge significantly different from the air around them.

<span class="mw-page-title-main">Electrostatic induction</span> Separation of electric charge due to presence of other charges

Electrostatic induction, also known as "electrostatic influence" or simply "influence" in Europe and Latin America, is a redistribution of electric charge in an object that is caused by the influence of nearby charges. In the presence of a charged body, an insulated conductor develops a positive charge on one end and a negative charge on the other end. Induction was discovered by British scientist John Canton in 1753 and Swedish professor Johan Carl Wilcke in 1762. Electrostatic generators, such as the Wimshurst machine, the Van de Graaff generator and the electrophorus, use this principle. See also Stephen Gray in this context. Due to induction, the electrostatic potential (voltage) is constant at any point throughout a conductor. Electrostatic induction is also responsible for the attraction of light nonconductive objects, such as balloons, paper or styrofoam scraps, to static electric charges. Electrostatic induction laws apply in dynamic situations as far as the quasistatic approximation is valid.

<span class="mw-page-title-main">Electrostatic generator</span> Device that generates electrical charge on a high voltage electrode

An electrostatic generator, or electrostatic machine, is an electrical generator that produces static electricity, or electricity at high voltage and low continuous current. The knowledge of static electricity dates back to the earliest civilizations, but for millennia it remained merely an interesting and mystifying phenomenon, without a theory to explain its behavior and often confused with magnetism. By the end of the 17th century, researchers had developed practical means of generating electricity by friction, but the development of electrostatic machines did not begin in earnest until the 18th century, when they became fundamental instruments in the studies about the new science of electricity.

<span class="mw-page-title-main">Vaneless ion wind generator</span>

A vaneless ion wind generator or power fence is a device that generates electrical energy by using the wind to move charged particles across an electric field.

<span class="mw-page-title-main">Atmospheric electricity</span> Electricity in planetary atmospheres

Atmospheric electricity describes the electrical charges in the Earth's atmosphere. The movement of charge between the Earth's surface, the atmosphere, and the ionosphere is known as the global atmospheric electrical circuit. Atmospheric electricity is an interdisciplinary topic with a long history, involving concepts from electrostatics, atmospheric physics, meteorology and Earth science.

Electrochemistry, a branch of chemistry, went through several changes during its evolution from early principles related to magnets in the early 16th and 17th centuries, to complex theories involving conductivity, electric charge and mathematical methods. The term electrochemistry was used to describe electrical phenomena in the late 19th and 20th centuries. In recent decades, electrochemistry has become an area of current research, including research in batteries and fuel cells, preventing corrosion of metals, the use of electrochemical cells to remove refractory organics and similar contaminants in wastewater electrocoagulation and improving techniques in refining chemicals with electrolysis and electrophoresis.

<span class="mw-page-title-main">Faraday's ice pail experiment</span> Electrostatics experiment

Faraday's ice pail experiment is a simple electrostatics experiment performed in 1843 by British scientist Michael Faraday that demonstrates the effect of electrostatic induction on a conducting container. For a container, Faraday used a metal pail made to hold ice, which gave the experiment its name. The experiment shows that an electric charge enclosed inside a conducting shell induces an equal charge on the shell, and that in an electrically conducting body, the charge resides entirely on the surface. It also demonstrates the principles behind electromagnetic shielding such as employed in the Faraday cage. The ice pail experiment was the first precise quantitative experiment on electrostatic charge. It is still used today in lecture demonstrations and physics laboratory courses to teach the principles of electrostatics.

This article provides information on the following six methods of producing electric power.

  1. Friction: Energy produced by rubbing two material together.
  2. Heat: Energy produced by heating the junction where two unlike metals are joined.
  3. Light: Energy produced by light being absorbed by photoelectric cells, or solar power.
  4. Chemical: Energy produced by chemical reaction in a voltaic cell, such as an electric battery.
  5. Pressure: Energy produced by compressing or decompressing specific crystals.
  6. Magnetism: Energy produced in a conductor that cuts or is cut by magnetic lines of force.

References

  1. Thomson, William (November 1867). "On a self-acting apparatus for multiplying and maintaining electric charges, with applications to the Voltaic Theory". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Series 4. 34 (231): 391–396. Retrieved September 1, 2015.
  2. "Kelvin Water Dropper activity". CSIRO. Archived from the original on 2005-02-08. Retrieved 2009-01-07.
  3. Maryam Zaiei-Moayyed; Edward Goodman; Peter Williams (November 2000). "Electrical deflection of polar liquid streams: A misunderstood demonstration". Journal of Chemical Education. 77 (11): 1520–1524. Bibcode:2000JChEd..77.1520Z. doi:10.1021/ed077p1520. S2CID   95473318.
  4. Markus Zahn, "Self-excited a.c. high voltage generation using water droplets", American Journal of Physics, vol. 41, pages 196–202 (1973).
  5. Alvaro G. Marin et al., "The microfluidic Kelvin water dropper". Lab on a chip (DOI: 10.1039/C3LC50832C). (https://arxiv.org/abs/1309.2866).
  6. Y.Xie et al., a "Pressure-driven ballistic Kelvin's water dropper for energy harvesting. ". "Lab on a chip"(DOI: 10.1039/C4LC00740A).
  7. Y.Xie et al., "High-efficiency ballistic electrostatic generator using microdroplets". "Nature Communications"(DOI:10.1038/ncomms4575).
  8. Francis, G. W. (2005). Electrostatic Experiments. Star City: Electret Scientific Company. pp. 98–100. ISBN   0-917406-13-3.
  9. Aplin, K. L.; Harrison, R. G. (2013-09-03). "Lord Kelvin's atmospheric electricity measurements". History of Geo- and Space Sciences. 4 (2): 83–95. arXiv: 1305.5347 . Bibcode:2013HGSS....4...83A. doi: 10.5194/hgss-4-83-2013 . ISSN   2190-5029.
  10. Desmet, S; Orban, F; Grandjean, F (1989-04-01). "On the Kelvin electrostatic generator". European Journal of Physics. 10 (2): 118–122. Bibcode:1989EJPh...10..118D. doi:10.1088/0143-0807/10/2/008. ISSN   0143-0807. S2CID   250798055.