Brush discharge

Last updated
A large brush discharge from the top of a Tesla coil. ElectricFire.jpg
A large brush discharge from the top of a Tesla coil.
Comparison of brush discharge (left) and corona discharges (right) from a Tesla coil 225W Zeus Tesla coil - arcs3 (cropped).jpg
Comparison of brush discharge (left) and corona discharges (right) from a Tesla coil
Closeup of a Tesla coil brush discharge, showing its filamentous nature Tesla-coil-discharge.jpg
Closeup of a Tesla coil brush discharge, showing its filamentous nature

A brush discharge is an electrical disruptive discharge similar to a corona discharge that takes place at an electrode with a high voltage applied to it, embedded in a nonconducting fluid, usually air. It is characterized by numerous luminous writhing sparks, plasma streamers composed of ionized air molecules, which repeatedly strike out from the electrode into the air, often with a crackling sound. [1] [2] The streamers spread out in a fan shape, giving it the appearance of a "brush".

Contents

Corona and brush discharges are sometimes called one-electrode discharges because they occur in the vicinity of a single electrode, and don't extend as far as the electrode carrying opposite polarity voltage in the circuit, as an electric arc (a two-electrode discharge) does.

Both brush and corona discharges represent local regions next to conductors where due to the high voltage the air has undergone electrical breakdown: it has ionized and become conductive, allowing current to leak into the air. They occur when the electric field at the conductor exceeds the dielectric strength of the air, the "disruptive potential gradient", roughly 30 kilovolts per centimeter. At that voltage, electrons in the air are accelerated by the electric field to a high enough velocity that they knock other electrons off gas molecules when they hit them, creating ions and additional electrons, which go on to ionize additional molecules in a chain reaction. The electric field is highest at sharp points on the conductor, so discharges tend to form at these points. Because the electric field decreases as the distance from the conductor increases, it eventually drops below the value needed for ionization, so corona and brush discharges have a limited extent and are localized near the conductor.

Occurring in very high voltage equipment like EHV power transmission lines, radio transmitters and their antennas, CRT power supplies, and power supplies for scientific equipment like lasers and particle accelerators, a brush discharge represents a serious failure of electrical insulation, and may be a fire hazard. Like other electric arcs, brush discharges produce ozone gas, which can be noxious to nearby people in an enclosed space and over time can cause embrittlement of some plastics. Tesla coils producing brush discharges and streamer discharges are displayed for entertainment at science fairs and rock concerts.

The ability of an electrical discharge to cause an explosion in flammable atmospheres is measured by the effective energy of the discharge. The effective energy of brush discharges is 10-20 mJ, much larger than that of corona discharges 0.1 mJ. Therefore, brush discharges are considered an explosion hazard, while corona discharges are not. Brush discharges can occur from charged insulating plastics (for example polyethylene) to a conductor.

See also

Related Research Articles

<span class="mw-page-title-main">Van de Graaff generator</span> Electrostatic particle accelerator operating on the triboelectric effect

A Van de Graaff generator is an electrostatic generator which uses a moving belt to accumulate electric charge on a hollow metal globe on the top of an insulated column, creating very high electric potentials. It produces very high voltage direct current (DC) electricity at low current levels. It was invented by American physicist Robert J. Van de Graaff in 1929. The potential difference achieved by modern Van de Graaff generators can be as much as 5 megavolts. A tabletop version can produce on the order of 100 kV and can store enough energy to produce visible electric sparks. Small Van de Graaff machines are produced for entertainment, and for physics education to teach electrostatics; larger ones are displayed in some science museums.

<span class="mw-page-title-main">Electrostatic discharge</span> Sudden flow of electric current between two electrically charged objects by contact

Electrostatic discharge (ESD) is a sudden and momentary flow of electric current between two differently-charged objects when brought close together or when the dielectric between them breaks down, often creating a visible spark associated with the static electricity between the objects.

The Biefeld–Brown effect is an electrical phenomenon that produces an ionic wind that transfers its momentum to surrounding neutral particles. It describes a force observed on an asymmetric capacitor when high voltage is applied to the capacitor's electrodes. Once suitably charged up to high DC potentials, a thrust at the negative terminal, pushing it away from the positive terminal, is generated. The effect was named by inventor Thomas Townsend Brown who claimed that he did a series of experiments with professor of astronomy Paul Alfred Biefeld, a former teacher of Brown whom Brown claimed was his mentor and co-experimenter at Denison University in Ohio.

<span class="mw-page-title-main">Static electricity</span> Imbalance of electric charges within or on the surface of a material

Static electricity is an imbalance of electric charges within or on the surface of a material. The charge remains until it is able to move away by an electric current or electrical discharge. The word "static" is used to differentiate it from current electricity, where an electric charge flows through an electrical conductor.

<span class="mw-page-title-main">Spark gap</span> Two conducting electrodes separated in order to allow an electric spark to pass between

A spark gap consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the potential difference between the conductors exceeds the breakdown voltage of the gas within the gap, a spark forms, ionizing the gas and drastically reducing its electrical resistance. An electric current then flows until the path of ionized gas is broken or the current reduces below a minimum value called the "holding current". This usually happens when the voltage drops, but in some cases occurs when the heated gas rises, stretching out and then breaking the filament of ionized gas. Usually, the action of ionizing the gas is violent and disruptive, often leading to sound, light, and heat.

<span class="mw-page-title-main">Corona discharge</span> Ionization of air around a high-voltage conductor

A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the electric field around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same mechanism as a gas discharge lamp. Corona discharges can also happen in weather, such as thunderstorms, where objects like ship masts or airplane wings have a charge significantly different from the air around them.

<span class="mw-page-title-main">Paschen's law</span> Physical law about electrical discharge in gases

Paschen's law is an equation that gives the breakdown voltage, that is, the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length. It is named after Friedrich Paschen who discovered it empirically in 1889.

<span class="mw-page-title-main">Electrical breakdown</span> Conduction of electricity through an insulator under sufficiently high voltage

In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material, subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied. Under sufficient voltage, electrical breakdown can occur within solids, liquids, or gases. However, the specific breakdown mechanisms are different for each kind of dielectric medium.

<span class="mw-page-title-main">High voltage</span> Electrical potential which is large enough to cause damage or injury

High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures.

<span class="mw-page-title-main">Electric arc</span> Electrical breakdown of a gas that results in an ongoing electrical discharge

An electric arc is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma, which may produce visible light. An arc discharge is initiated either by thermionic emission or by field emission. After initiation, the arc relies on thermionic emission of electrons from the electrodes supporting the arc. An arc discharge is characterized by a lower voltage than a glow discharge. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".

<span class="mw-page-title-main">Electrostatic precipitator</span> Filtration device

An electrostatic precipitator (ESP) is a filterless device that removes fine particles, such as dust and smoke, from a flowing gas using the force of an induced electrostatic charge minimally impeding the flow of gases through the unit.

<span class="mw-page-title-main">Ion wind</span> Charged-particle flow due to high electrostatic potential

Ion wind, ionic wind, corona wind or electric wind is the airflow of charged particles induced by electrostatic forces linked to corona discharge arising at the tips of some sharp conductors subjected to high voltage relative to ground. Ion wind is an electrohydrodynamic phenomenon. Ion wind generators can also be considered electrohydrodynamic thrusters.

<span class="mw-page-title-main">Nitrogen laser</span>

A nitrogen laser is a gas laser operating in the ultraviolet range using molecular nitrogen as its gain medium, pumped by an electrical discharge.

An electron avalanche is a process in which a number of free electrons in a transmission medium are subjected to strong acceleration by an electric field and subsequently collide with other atoms of the medium, thereby ionizing them. This releases additional electrons which accelerate and collide with further atoms, releasing more electrons—a chain reaction. In a gas, this causes the affected region to become an electrically conductive plasma.

<span class="mw-page-title-main">Electric discharge</span> Flow of electric current through a non-metal medium

In electromagnetism, an electric discharge is the release and transmission of electricity in an applied electric field through a medium such as a gas.

<span class="mw-page-title-main">Electric spark</span> Abrupt electrical discharge through an ionised channel

An electric spark is an abrupt electrical discharge that occurs when a sufficiently high electric field creates an ionized, electrically conductive channel through a normally-insulating medium, often air or other gases or gas mixtures. Michael Faraday described this phenomenon as "the beautiful flash of light attending the discharge of common electricity".

In electromagnetism, a leader is a hot, highly conductive channel of plasma that plays a critical part during dielectric breakdown within a long electric spark.

<span class="mw-page-title-main">Corona ring</span>

A corona ring, more correctly referred to as an anti-corona ring, is a toroid of conductive material, usually metal, which is attached to a terminal or other irregular hardware piece of high voltage equipment. The purpose of the corona ring is to distribute the electric field gradient and lower its maximum values below the corona threshold, preventing corona discharge. Corona rings are used on very high voltage power transmission insulators and switchgear, and on scientific research apparatus that generates high voltages. A very similar related device, the grading ring, is used around insulators.

<span class="mw-page-title-main">Streamer discharge</span> Type of transient electric discharge

In electromagnetism, a streamer discharge, also known as filamentary discharge, is a type of transient electric discharge which forms at the surface of a conductive electrode carrying a high voltage in an insulating medium such as air. Streamers are luminous writhing branching sparks, plasma channels composed of ionized air molecules, which repeatedly strike out from the electrode into the air.

References

  1. Kaiser, Kenneth L. (2005). Electrostatic Discharge. CRC Press. pp. 2.73–2.75. ISBN   0849371880.
  2. Britton, Laurence G. (2010). Avoiding Static Ignition Hazards in Chemical Operations. John Wiley. pp. 20–24. ISBN   978-0470935392.
  3. Kaiser, Kenneth L. (2005-09-22). Electrostatic Discharge. CRC Press. ISBN   9780849371882. When the electric field near an electrode with a radius or curvature between about 5 mm and 50 mm is sufficiently large (about 500 kV/m). irregular multiple discharge paths are seen that have the look of a brush. ... If the electrode is too sharp, a corona discharge will usually occur instead of a brush discharge.
  4. Banerjee, Sanjoy (2002-11-27). Industrial Hazards and Plant Safety. CRC Press. ISBN   9781560320692. Spark discharge occurs in a sudden burst that bridges the gap between two conductive surfaces, each with a radius of curvature > 50 mm. On the other hand, brush discharges fail to bridge the gap and occur in rapid succession, giving the impression of a brush. Corona discharges form a luminous region around a conductor and discharge continuously for regions with a radius of curvature < 1 mm.