Antistatic device

Last updated
An antistatic wrist strap with crocodile clip. AntiStatic-Wrist-Guard.jpg
An antistatic wrist strap with crocodile clip.

An antistatic device is any device that reduces, dampens, or otherwise inhibits electrostatic discharge, or ESD, which is the buildup or discharge of static electricity. [1] [2] ESD can damage electrical components such as computer hard drives, and even ignite flammable liquids and gases.

Contents

Many methods exist for neutralizing static electricity, varying in use and effectiveness depending on the application. Antistatic agents are chemical compounds that can be added to an object, or the packaging of an object, to help deter the buildup or discharge of static electricity. [3] For the neutralization of static charge in a larger area, such as a factory floor, semiconductor cleanroom or workshop, antistatic systems may utilize electron emission effects such as corona discharge or photoemission that introduce ions into the area that combine with and neutralize any electrically charged object. [4] In many situations, sufficient ESD protection can be achieved with electrical grounding.

Symbology

Various symbols can be found on products, indicating that the product is electrostatically sensitive, as with sensitive electrical components, or that it offers antistatic protection, as with antistatic bags.

Reach symbol

ANSI/ESD standard S8.1-2007 is most commonly seen on applications related to electronics. Several variations consist of a triangle with a reaching hand depicted inside of it using negative space.

ESD (Susceptible).svg

Versions of the symbol will often have the hand being crossed out as a warning for the component being protected, indicating that it is ESD sensitive and is not to be touched unless antistatic precautions are taken.

ESD (Protected).svg

Another version of the symbol has the triangle surrounded by an arc. This variant is in reference to the antistatic protective device, such as an antistatic wrist strap, rather than the component being protected. It usually does not feature the hand being crossed out, indicating that it makes contact with the component safe. [5]

Circle

A label on an antistatic bag featuring the circle symbol on the left and the reaching symbol on the right ESD label.jpg
A label on an antistatic bag featuring the circle symbol on the left and the reaching symbol on the right

Another common symbol takes the form of a bold circle being intersected by three arrows. Originating from a U.S. military standard, it has been adopted industry-wide. It is intended as a depiction of a device or component being breached by static charges, indicated by the arrows. [5]

Examples

Types of antistatic devices include:

Antistatic bag

An antistatic bag is a bag used for storing or shipping electronic components which may be prone to damage caused by ESD.

Ionizing bar

An ionizing bar, sometimes referred to as a static bar, is a type of industrial equipment used for removing static electricity from a production line to dissipate static cling and other such phenomena that would disrupt the line. It is important in the manufacturing and printing industries, although it can be used in other applications as well. [6] [7]

Ionizing bars are most commonly suspended above a conveyor belt or other apparatus in a production line where the product can pass below it; the distance is usually calibrated for the specific application. [4] The bar works by emitting an ionized corona onto the products below it. [4] [8] If then a product on the line has a positive or negative static charge, as it passes through the ionized aura created by the bar, it will attract the correspondingly charged positive or negative ions and become electrically neutral. [8] [9]

Antistatic garments

Antistatic shoes ESD Sicherheitsschuhe.jpg
Antistatic shoes

Antistatic garments or antistatic clothing can be used to prevent damage to electrical components or to prevent fires and explosions when working with flammable liquids and gases. Antistatic garments are used in many industries such as electronics, communications, telecommunications and defense applications.[ citation needed ]

Antistatic garments have conductive threads in them, creating a wearable version of a Faraday cage. Antistatic garments attempt to shield ESD sensitive devices from harmful static charges from clothing such as wool, silk, and synthetic fabrics on people working with them. For these garments to work properly, they must also be connected to ground with a strap. Most garments are not conductive enough to provide personal grounding, so antistatic wrist and foot straps are also worn. There are three types of static control garments that are compliant to the ANSI/ESD S20.20-2014 standards: 1) static control garment, 2) groundable static control garment, 3) groundable static control garment system. [10]

Antistatic mat

An antistatic floor mat or ground mat is one of a number of antistatic devices designed to help eliminate static electricity. It does this by having a controlled low resistance: a metal mat would keep parts grounded but would short out exposed parts; an insulating mat would provide no ground reference and so would not provide grounding. Typical resistance is on the order of 105 to 108 ohms between points on the mat and to ground. [11] [12] The mat would need to be grounded (earthed). This is usually accomplished by plugging into the grounded line in an electrical outlet. It is important to discharge at a slow rate, therefore a resistor should be used in grounding the mat. The resistor, as well as allowing high-voltage charges to leak through to ground, also prevents a shock hazard when working with low-voltage parts. Some ground mats allow one to connect an antistatic wrist strap to them. Versions are designed for placement on both the floor and desk.

Antistatic wrist strap

An antistatic wrist strap, ESD wrist strap, or ground bracelet is an antistatic device used to safely ground a person working on very sensitive electronic equipment, to prevent the buildup of static electricity on their body, which can result in ESD. It is used in the electronics industry when handling electronic devices which can be damaged by ESD, and also sometimes by people working around explosives, to prevent electric sparks which could set off an explosion. It consists of an elastic band of fabric with fine conductive fibers woven into it, attached to a wire with a clip on the end to connect it to a ground conductor. The fibers are usually made of carbon or carbon-filled rubber, and the strap is bound with a stainless steel clasp or plate. They are usually used in conjunction with an antistatic mat on the workbench, or a special static-dissipating plastic laminate on the workbench surface.[ citation needed ]

The wrist strap is usually worn on the nondominant hand (the left wrist for a right-handed person). It is connected to ground through a coiled retractable cable and 1  megohm resistor, which allows high-voltage charges to leak through but prevents a shock hazard when working with low-voltage parts. Where higher voltages are present, extra resistance (0.75  megohm per 250 V) is added in the path to ground to protect the wearer from excessive currents; this typically takes the form of a 4 megohm resistor in the coiled cable (or, more commonly, a 2 megohm resistor at each end).[ citation needed ]

Wrist straps designed for industrial use usually connect to ground connections built into the workplace, via either a standard 4 mm plug or 10 mm press stud, whereas straps designed for consumer use often have a crocodile clip for the ground connection.

In addition to wrist straps, ankle and heel straps are used in industry to bleed away accumulated charge from a body. These devices are usually not tethered to earth ground, but instead incorporate high resistance in their construction, and work by dissipating electrical charge to special floor tiles. Such straps are used when workers need to be mobile in a work area and a grounding cable would get in the way. They are used particularly in an operating theatre, where oxygen or explosive anesthetic gases are used.[ citation needed ]

Some wrist straps are "wireless" or "dissipative", and claim to protect against ESD without needing a ground wire, typically by air ionization or corona discharge. These are widely regarded as ineffective, [13] [14] if not fraudulent, and examples have been tested and shown not to work. [15] [16] Professional ESD standards all require wired wrist straps. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Electrometer</span> Instrument for measuring electric charge

An electrometer is an electrical instrument for measuring electric charge or electrical potential difference. There are many different types, ranging from historical handmade mechanical instruments to high-precision electronic devices. Modern electrometers based on vacuum tube or solid-state technology can be used to make voltage and charge measurements with very low leakage currents, down to 1 femtoampere. A simpler but related instrument, the electroscope, works on similar principles but only indicates the relative magnitudes of voltages or charges.

<span class="mw-page-title-main">Ground (electricity)</span> Reference point in an electrical circuit from which voltages are measured

In electrical engineering, ground or earth may be a reference point in an electrical circuit from which voltages are measured, a common return path for electric current, or a direct physical connection to the Earth.

<span class="mw-page-title-main">Electrostatic discharge</span> Sudden flow of electric current between two electrically charged objects by contact

Electrostatic discharge (ESD) is a sudden and momentary flow of electric current between two differently-charged objects when brought close together or when the dielectric between them breaks down, often creating a visible spark associated with the static electricity between the objects.

<span class="mw-page-title-main">Static electricity</span> Imbalance of electric charges within or on the surface of a material

Static electricity is an imbalance of electric charges within or on the surface of a material. The charge remains until it is able to move away by an electric current or electrical discharge. The word "static" is used to differentiate it from current electricity, where an electric charge flows through an electrical conductor.

<span class="mw-page-title-main">Corona discharge</span> Ionization of air around a high-voltage conductor

A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the electric field around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same mechanism as a gas discharge lamp. Corona discharges can also happen in weather, such as thunderstorms, where objects like ship masts or airplane wings have a charge significantly different from the air around them.

<span class="mw-page-title-main">Air ioniser</span> ION is mostly used on air conditioning products. Ioniser is another word for air purifier

An air ioniser is a device that uses high voltage to ionise air molecules. Negative ions, or anions, are particles with one or more extra electrons, conferring a net negative charge to the particle. Cations are positive ions missing one or more electrons, resulting in a net positive charge. Some commercial air purifiers are designed to generate negative ions. Another type of air ioniser is the electrostatic discharge (ESD) ioniser used to neutralise static charge.

<span class="mw-page-title-main">High voltage</span> Electrical potential which is large enough to cause damage or injury

High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.

<span class="mw-page-title-main">Atmospheric electricity</span> Electricity in planetary atmospheres

Atmospheric electricity describes the electrical charges in the Earth's atmosphere. The movement of charge between the Earth's surface, the atmosphere, and the ionosphere is known as the global atmospheric electrical circuit. Atmospheric electricity is an interdisciplinary topic with a long history, involving concepts from electrostatics, atmospheric physics, meteorology and Earth science.

In electronics, a bleeder resistor, bleeder load, leakage resistor, capacitor discharge resistor or safety discharge resistor is a resistor connected in parallel with the output of a high-voltage power supply circuit for the purpose of discharging the electric charge stored in the power supply's filter capacitors when the equipment is turned off, for safety reasons. It eliminates the possibility of a leftover charge causing electric shock if people handle or service the equipment in the off state, believing it is safe. A bleeder resistor is usually a standard resistor rather than a specialized component.

Body capacitance is the physical property of the human body that it acts as a capacitor. Like any other electrically conductive object, a human body can store electric charge if insulated. The actual amount of capacitance varies with the surroundings; it would be low when standing on top of a pole with nothing nearby, but high when leaning against an insulated, but grounded large metal surface, such as a household refrigerator, or a metal wall in a factory.

<span class="mw-page-title-main">Electrostatic-sensitive device</span> Components that can be damaged by electrostatic discharges

An electrostatic-sensitive device is any component which can be damaged by common static charges which build up on people, tools, and other non-conductors or semiconductors. ESD commonly also stands for electrostatic discharge.

ggNMOS Electrostatic discharge (ESD) protection device

Grounded-gate NMOS, commonly known as ggNMOS, is an electrostatic discharge (ESD) protection device used within CMOS integrated circuits (ICs). Such devices are used to protect the inputs and outputs of an IC, which can be accessed off-chip and are therefore subject to ESD when touched. An ESD event can deliver a large amount of energy to the chip, potentially destroying input/output circuitry; a ggNMOS device or other ESD protective devices provide a safe path for current to flow, instead of through more sensitive circuitry. ESD protection by means of such devices or other techniques is important to product reliability: 35% of all IC failures in the field are associated with ESD damage.

<span class="mw-page-title-main">Antistatic bag</span> Type of packaging for electronics and static-sensitive devices

An antistatic bag is a bag used for storing electronic components, which are prone to damage caused by electrostatic discharge (ESD).

Transmission-Line Pulse (TLP) is a way to study integrated circuit technologies and circuit behavior in the current and time domain of electrostatic-discharge (ESD) events. The concept was described shortly after WWII in pp. 175–189 of Pulse Generators, Vol. 5 of the MIT Radiation Lab Series. Also, D. Bradley, J. Higgins, M. Key, and S. Majumdar realized a TLP-based laser-triggered spark gap for kilovolt pulses of accurately variable timing in 1969. For investigation of ESD and electrical-overstress (EOS) effects a measurement system using a TLP generator has been introduced first by T. Maloney and N. Khurana in 1985. Since then, the technique has become indispensable for integrated circuit ESD protection development.

<span class="mw-page-title-main">Applications of capacitors</span> Uses of capacitors in daily life

Capacitors have many uses in electronic and electrical systems. They are so ubiquitous that it is rare that an electrical product does not include at least one for some purpose. Capacitors allow only AC signals to pass when they are charged blocking DC signals. The main components of filters are capacitors. Capacitors have the ability to connect one circuit segment to another. Capacitors are used by Dynamic Random Access Memory (DRAM) devices to represent binary information as bits.

<span class="mw-page-title-main">ESD simulator</span>

An ESD simulator, also known as an ESD gun, is a handheld unit used to test the immunity of devices to electrostatic discharge (ESD). These simulators are used in special electromagnetic compatibility (EMC) laboratories. ESD pulses are fast, high-voltage pulses created when two objects with different electrical charges come into close proximity or contact. Recreating them in a test environment helps to verify that the device under test is immune to static electricity discharges.

<span class="mw-page-title-main">Failure of electronic components</span> Ways electronic components fail and prevention measures

Electronic components have a wide range of failure modes. These can be classified in various ways, such as by time or cause. Failures can be caused by excess temperature, excess current or voltage, ionizing radiation, mechanical shock, stress or impact, and many other causes. In semiconductor devices, problems in the device package may cause failures due to contamination, mechanical stress of the device, or open or short circuits.

<span class="mw-page-title-main">Electrostatic discharge materials</span>

Electrostatic discharge materials are plastics that reduce static electricity to protect against damage to electrostatic-sensitive devices (ESD) or to prevent the accidental ignition of flammable liquids or gases.

References

  1. "What is antistatic device?". www.computerhope.com. Retrieved 2016-01-20.
  2. Woodford, Chris (14 March 2009). "How do anti-static products work? - Explain that Stuff". www.explainthatstuff.com. Retrieved 2016-01-20.
  3. Allen, Ryne C. (August 1999). "ESD BAGS: TO SHIELD OR NOT TO SHIELD". EE-Evaluation Engineering. Retrieved 2017-07-02.
  4. 1 2 3 "Ionizers and Static Eliminators Information". IEEE GlobalSpec . Retrieved 2017-07-02.
  5. 1 2 "ESD Labels – Have A Look At The Various Symbols For ESD Labels". www.shippinglabels.com. Retrieved 2016-04-04.
  6. "Static Eliminators". EXAIR. Archived from the original on June 1, 2016. Retrieved May 2, 2016.
  7. "Static electricity, dust and particle problem". www.swedishelectrostatics.com. Retrieved 2016-05-02.
  8. 1 2 Robinson, Kelly (2009-12-01). "How Static Bars Work". Paper, Film & Foil CONVERTER. Retrieved 2017-07-02.
  9. "Static Control Components: Static Bars". AiRTX International. Retrieved 2017-07-02.
  10. ESD Smocks: Compliance to ANSI/ESD S20.20-2021; UNITED Static Control Products.
  11. "3M™ Dissipative Vinyl Three-Layer Mats and Rolls 8200 Series" (PDF). digikey.com. Retrieved 2 July 2023.
  12. "Archived copy" (PDF). Archived from the original (PDF) on 2015-06-18. Retrieved 2013-01-11.{{cite web}}: CS1 maint: archived copy as title (link)
  13. 1 2 Namaguchi, Toshikazu; Hideka Uchida (1998). "Wrist strap designs and comparison of test results for MIL-PRF-87893 and ANSI EOS/ESD Association S1.1". Electrical Overstress/Electrostatic Discharge Symposium Proceedings, October 6–8, 1998, Reno, Nevada. USA: ESD Association, Institute of Electrical and Electronics Engineers (IEEE). pp. 3B.4.3. doi:10.1109/EOSESD.1998.737044. 1878303910.
  14. Laumeister, Bill (March 2, 2011). "Tutorial 4991: Oops...Practical ESD Protection vs. Foolhardy Placebos". Application Notes. Maxim Integrated. Retrieved January 21, 2013.
  15. "Evaluation of Wireless Wrist Straps". ESD Journal, Fowler Associates, Inc. Fowler Associates, Inc. October 27, 2005. Retrieved July 28, 2018.
  16. "ESD Wireless Wrist Straps: The Shocking Truth". Office of Safety and Mission Assurance, NASA . January 10, 2018. Archived from the original on 2019-06-07. Retrieved September 22, 2021.