Metavirus

Last updated
Metavirus
Virus classification Red Pencil Icon.png
(unranked): Virus
Realm: Riboviria
Kingdom: Pararnavirae
Phylum: Artverviricota
Class: Revtraviricetes
Order: Ortervirales
Family: Metaviridae
Genus:Metavirus

Metavirus is a genus of viruses in the family Metaviridae . [1] They are retrotransposons that invade a eukaryotic host genome and may only replicate once the virus has infected the host. [2] These genetic elements exist to infect and replicate in their host genome and are derived from ancestral elements unrelated from their host. Metavirus may use several different hosts for transmission, and has been found to be transmissible through ovule and pollen of some plants. [3]

Contents

Metavirus contains five families of the Ty3/Gypsy element with either one or two open-reading frames; these families are mdg1, mdg3, blastopia,412, and micropia. [4] Each of the five families contains either one or two open-reading frames, gag3 and/or pol3. [5] There is evidence to support that amino acid deprivation in the elements host genome has frequently caused a frameshift towards the Ty3 element. [6] Metavirus corresponds with the Ogre/Tat gene lineage. [7]

Morphology

Species of Metavirus are single-stranded RNA retrotransposons. They have an icosahedral and linear conformation and are not enclosed in an envelope. [8] Their diameter is approximately 50 nm and they are usually between 42 and 52 nm in length. [8] These genetic elements contain a core and capsid.[ citation needed ]

Species

The following species are recognized: [1]

Evolution

Because of their high mutation and recombination rate and their ability to conduct horizontal gene transfer, the evolutionary history of many retroelements may be challenging to trace (Benachenhou et al., 2013). [9] Scientists often look to the genomes of Metavirus to compare nucleic acid sequences to the sequences of other viruses, constructing lineages and proposing common ancestors.[ citation needed ]

Multiple taxa of Metavirus have genomic sequence that are homologous to other genera of Metaviridae and a suggest common ancestor and/or coevolution. [10] Scientists often look at capsid proteins for evidence of Metavirus evolution. [11] Much of the lineage of Metavirus remains unsolved and is presently being researched.[ citation needed ]

Studies

Mascagni et al. (2017) conducted researched to find homologs and identify strands in sunflower species. In the experiment, DNA was extracted from various helianthus species and the genomes of retrotransposons were identified using BLASTX analysis. Phylogenetic trees were constructed using neighbor-joining clustering method and a bioinformatic pipeline was constructed to allow genomic analysis. Two elements, SURE and Helicopia, were identified and placed into the Gypsy and Copia superfamilies, respectively. [12] Thus, the SURE element belongs to the Gypsy group, of the Ogre/Tat lineage, of the genus Metavirus. [12] Further analysis led Mascagni et al. (2017) to identify mutations and conclude that the Metavirus lineage evolved before Sirevirus. Mascagni et al. (2017) also found evidence that the SURE elements and Helicopia elements had hybridized, potential for new lineages.

Nefedova and Kim (2009), conducted a study on Drosophila melanogaster to further identify lineages of Metavirus. Homologs were identified from previously extracted DNA of retrotransposons and Drosophila melanogaster and phylogenetic trees were constructed. [13] Metaviruses possess the env gene, allowing them to be infective, which Nefedova and Kim (2009) concluded was obtained from horizontal gene transfer from baculoviruses. [13] Metavirus contains the roo element which is thought to have been obtained from gene transfer from Errantivirus, or more likely, the two genera share a common ancestor. [13]

Related Research Articles

<span class="mw-page-title-main">Retroposon</span>

Retroposons are repetitive DNA fragments which are inserted into chromosomes after they had been reverse transcribed from any RNA molecule.

<span class="mw-page-title-main">Transposable element</span> Semiparasitic DNA sequence

A transposable element is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Transposition often results in duplication of the same genetic material. Barbara McClintock's discovery of them earned her a Nobel Prize in 1983. Its importance in personalized medicine is becoming increasingly relevant, as well as gaining more attention in data analytics given the difficulty of analysis in very high dimensional spaces.

Selfish genetic elements are genetic segments that can enhance their own transmission at the expense of other genes in the genome, even if this has no positive or a net negative effect on organismal fitness. Genomes have traditionally been viewed as cohesive units, with genes acting together to improve the fitness of the organism. However, when genes have some control over their own transmission, the rules can change, and so just like all social groups, genomes are vulnerable to selfish behaviour by their parts.

<span class="mw-page-title-main">Retrotransposon</span> Type of genetic component

Retrotransposons are a type of genetic component that copy and paste themselves into different genomic locations (transposon) by converting RNA back into DNA through the reverse transcription process using an RNA transposition intermediate.

Metaviridae is a family of viruses which exist as Ty3-gypsy LTR retrotransposons in a eukaryotic host's genome. They are closely related to retroviruses: members of the family Metaviridae share many genomic elements with retroviruses, including length, organization, and genes themselves. This includes genes that encode reverse transcriptase, integrase, and capsid proteins. The reverse transcriptase and integrase proteins are needed for the retrotransposon activity of the virus. In some cases, virus-like particles can be formed from capsid proteins.

Pseudoviridae is a family of viruses, which includes three genera.

<span class="mw-page-title-main">Endogenous retrovirus</span> Inherited retrovirus encoded in an organisms genome

Endogenous retroviruses (ERVs) are endogenous viral elements in the genome that closely resemble and can be derived from retroviruses. They are abundant in the genomes of jawed vertebrates, and they comprise up to 5–8% of the human genome.

An insulator is a type of cis-regulatory element known as a long-range regulatory element. Found in multicellular eukaryotes and working over distances from the promoter element of the target gene, an insulator is typically 300 bp to 2000 bp in length. Insulators contain clustered binding sites for sequence specific DNA-binding proteins and mediate intra- and inter-chromosomal interactions.

<span class="mw-page-title-main">Mobile genetic elements</span> DNA sequence whose position in the genome is variable

Mobile genetic elements (MGEs) sometimes called selfish genetic elements are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms. In humans, approximately 50% of the genome is thought to be MGEs. MGEs play a distinct role in evolution. Gene duplication events can also happen through the mechanism of MGEs. MGEs can also cause mutations in protein coding regions, which alters the protein functions. These mechanisms can also rearrange genes in the host genome generating variation. These mechanism can increase fitness by gaining new or additional functions. An example of MGEs in evolutionary context are that virulence factors and antibiotic resistance genes of MGEs can be transported to share genetic code with neighboring bacteria. However, MGEs can also decrease fitness by introducing disease-causing alleles or mutations. The set of MGEs in an organism is called a mobilome, which is composed of a large number of plasmids, transposons and viruses.

<span class="mw-page-title-main">Long terminal repeat</span>

A long terminal repeat (LTR) is a pair of identical sequences of DNA, several hundred base pairs long, which occur in eukaryotic genomes on either end of a series of genes or pseudogenes that form a retrotransposon or an endogenous retrovirus or a retroviral provirus. All retroviral genomes are flanked by LTRs, while there are some retrotransposons without LTRs. Typically, an element flanked by a pair of LTRs will encode a reverse transcriptase and an integrase, allowing the element to be copied and inserted at a different location of the genome. Copies of such an LTR-flanked element can often be found hundreds or thousands of times in a genome. LTR retrotransposons comprise about 8% of the human genome.

Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA molecules expressed in animal cells. piRNAs form RNA-protein complexes through interactions with piwi-subfamily Argonaute proteins. These piRNA complexes are mostly involved in the epigenetic and post-transcriptional silencing of transposable elements and other spurious or repeat-derived transcripts, but can also be involved in the regulation of other genetic elements in germ line cells.

<span class="mw-page-title-main">Mobilome</span>

The mobilome is the entire set of mobile genetic elements in a genome. Mobilomes are found in eukaryotes, prokaryotes, and viruses. The compositions of mobilomes differ among lineages of life, with transposable elements being the major mobile elements in eukaryotes, and plasmids and prophages being the major types in prokaryotes. Virophages contribute to the viral mobilome.

Group-specific antigen, or gag, is the polyprotein that contains the core structural proteins of an Ortervirus. It was named as such because scientists used to believe it was antigenic. Now it is known that it makes up the inner shell, not the envelope exposed outside. It makes up all the structural units of viral conformation and provides supportive framework for mature virion.

<span class="mw-page-title-main">R2 RNA element</span>

The R2 RNA element is a non-long terminal repeat (non-LTR) retrotransposable element that inserts at a specific site in the 28S ribosomal RNA (rRNA) genes of most insect genomes. In order to insert itself into the genome, retrotransposon encoded protein (R2) protein makes a specific nick in one of the DNA strands at the insertion site and uses the 3′ hydroxyl group exposed by this nick to prime the reverse transcription process termed target primed reverse transcription (TPRT), where the RNA genome is transcribed into DNA.

<span class="mw-page-title-main">LTR retrotransposon</span> Class I transposable element

LTR retrotransposons are class I transposable element characterized by the presence of long terminal repeats (LTRs) directly flanking an internal coding region. As retrotransposons, they mobilize through reverse transcription of their mRNA and integration of the newly created cDNA into another location. Their mechanism of retrotransposition is shared with retroviruses, with the difference that most LTR-retrotransposons do not form infectious particles that leave the cells and therefore only replicate inside their genome of origin. Those that do (occasionally) form virus-like particles are classified under Ortervirales.

<span class="mw-page-title-main">Long interspersed nuclear element</span>

Long interspersed nuclear elements (LINEs) are a group of non-LTR retrotransposons that are widespread in the genome of many eukaryotes. They make up around 21.1% of the human genome. LINEs make up a family of transposons, where each LINE is about 7,000 base pairs long. LINEs are transcribed into mRNA and translated into protein that acts as a reverse transcriptase. The reverse transcriptase makes a DNA copy of the LINE RNA that can be integrated into the genome at a new site.

Semotivirus is the only genus of viruses in the family Belpaoviridae. Species exist as retrotransposons in a eukaryotic host's genome. BEL/pao transposons are only found in animals.

Caenorhabditis elegans Cer13 virus is a species of virus in the genus Semotivirus and the family Belpaoviridae. It exists as retrotransposons in the Caenorhabditis elegans genome.

<i>Ortervirales</i> Order of viruses

Ortervirales is an order that contains all accepted species of single-stranded RNA viruses that replicate through a DNA intermediate and all accepted species of double-stranded DNA viruses that replicate through an RNA intermediate . The name is derived from the reverse of retro.

Retrozymes are a family of retrotransposons first discovered in the genomes of plants but now also known in genomes of animals. Retrozymes contain a hammerhead ribozyme (HHR) in their sequences, although they do not possess any coding regions. Retrozymes are nonautonomous retroelements, and so borrow proteins from other elements to move into new regions of a genome. Retrozymes are actively transcribed into covalently closed circular RNAs and are detected in both polarities, which may indicate the use of rolling circle replication in their lifecycle.

References

  1. 1 2 "ICTV Report Metaviridae".
  2. Siebert, C (2006). "Unintelligent Design" (PDF). Discover.
  3. Singh, R; Finnie, R (September 1973). "Seed transmission of potato spindle tuber Metavirus through the ovule of Scopolia sinensis". Canadian Plant Disease Journal. 53: 153–154.
  4. Nefedova, Lidia; Kim, Alexander. "Mechanisms of LTR-Retroelement Transposition: Lessons from Drosophilia melanogaster". Viruses. 9: 1–10.
  5. Levy, Camille; et al. (2013). "Virus-like particle vaccine induces cross-protection against human metapneumovirus infections in mice". Vaccine. 31 (25): 2778–2785. doi:10.1016/j.vaccine.2013.03.051. PMID   23583815.
  6. Turkel, Sezai (June 2016). "Amino Acid Starvation Enhances Programmed Ribosomal Frameshift in Metavirus Ty3 of Saccharomyces cerevisiae". Advances in Biology. 2016: 1–6. doi: 10.1155/2016/1840782 .
  7. Neumann, P; Pozarkova, D; Macas, J (2003). "Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced". Plant Molecular Biology. 53 (3): 399–410. doi:10.1023/B:PLAN.0000006945.77043.ce. PMID   14750527. S2CID   13412101.
  8. 1 2 Menees, Thomas (2018). The Springer Index of Viruses. Springer Nature. pp. 843–849.
  9. Benachenhou, Farid; Sperber, Göran O.; Bongcam-Rudloff, Erik; Andersson, Göran; Boeke, Jef D.; Blomberg, Jonas (2013). "Conserved structure and inferred evolutionary history of long terminal repeats (LTRs)". Mobile DNA. 4 (1): 5. doi:10.1186/1759-8753-4-5. PMC   3601003 . PMID   23369192.
  10. Koonin, M; Dolja, V; Krupovic, M (2015). "Origins and evolution of viruses of eukaryotes: The ultimate modularity". Virology. 479–480: 2–25. doi: 10.1016/j.virol.2015.02.039 . PMC   5898234 . PMID   25771806.
  11. Gong, Z; Han, G (2018). "Insect Retroelements Provide Novel Insights into the Origin of Hepatitis B Viruses". Molecular Biology and Evolution. 35 (9): 2254–2259. doi: 10.1093/molbev/msy129 . PMID   29924338.
  12. 1 2 Mascagni, Farid (2017). "Different histories of two highly variable LTR retrotransposons in sunflower species" (PDF). Gene. 634: 5–14. doi:10.1016/j.gene.2017.08.014. hdl: 11568/885451 . PMID   28867564.
  13. 1 2 3 Nefedove, L (2009). "Molecular phylogeny and systematics of drosophila retrotransposons and retroviruses". Molecular Biology. 43 (5): 747–756. doi:10.1134/S0026893309050069. S2CID   6078688.