Baculoviridae

Last updated

Baculoviridae
ODD.Baculo.Fig1.v3.png
Baculovirus virions and nucleocapsids
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Class: Naldaviricetes
Order: Lefavirales
Family:Baculoviridae
Genera

Baculoviridae is a family of viruses. Arthropods, among the most studied being Lepidoptera, Hymenoptera and Diptera, serve as natural hosts. Currently, 85 species are placed in this family, assigned to four genera. [1] [2] [3]

Contents

Baculoviruses are known to infect insects, with over 600 host species having been described. Immature (larval) forms of lepidopteran species (moths and butterflies) are the most common hosts, but these viruses have also been found infecting sawflies, and mosquitoes. Although baculoviruses are capable of entering mammalian cells in culture, [4] they are not known to be capable of replication in mammalian or other vertebrate animal cells.

Starting in the 1940s, they were used and studied widely as biopesticides in crop fields. Baculoviruses contain a circular, double-stranded DNA (dsDNA) genome ranging from 80 to 180 kbp.

Historical influence

The earliest records of baculoviruses can be found in the literature from as early as the 16th century in reports of "wilting disease" infecting silkworm larvae. [5] Starting in the 1940s, the viruses were used and studied widely as biopesticides in crop fields. Since the 1990s, they have been employed to produce complex eukaryotic proteins in insect cell cultures (see Sf21, High Five cells). These recombinant proteins have been used in research and as vaccines in both human and veterinary medical treatments (for example, the most widely used vaccine for prevention of H5N1 avian influenza in chickens was produced in a baculovirus expression vector). More recently, baculoviruses were found to transduce mammalian cells with a suitable promoter. [6]

Baculovirus lifecycle

Diagram of a NPV lifecycle Npv-life cycle-en.jpg
Diagram of a NPV lifecycle
A dead caterpillar infected by NPV. CasualtyNPV.jpg
A dead caterpillar infected by NPV.

The baculovirus lifecycle involves two distinct forms of virus. Occlusion-derived virus (ODV) is present in a protein matrix (polyhedrin or granulin) and is responsible for the primary infection of the host, while the budded virus (BV) is released from the infected host cells later during the secondary infection.[ citation needed ]

Baculoviruses have very species-specific tropisms among the invertebrates with over 700 host species having been described. Immature (larval) forms of lepidopteran species are the most common hosts, but these viruses have also been found infecting sawflies and mosquitoes. Reports of baculovirus infections of shrimp and beetles (e.g. Oryctes rhinocerus) were found to be nudiviruses, a closely related lineage to the baculoviruses.[ citation needed ]

Typically, the initial infection occurs when a susceptible host insect feeds on plants that are contaminated with the occluded form of the virus. The protein matrix dissolves in the alkaline environment of the host midgut (stomach), releasing ODVs that then fuse to the columnar epithelial cell membranes of the host intestine and are taken into the cell in endosomes. Nucleocapsids escape from the endosomes and are transported to nucleus. This step is possibly mediated by actin filaments. Viral transcription and replication occur in the cell nucleus and new BV particles are budded out from the basolateral side to spread the infection systemically. During budding, BV acquires a loosely fitting host cell membrane with expressed and displayed viral glycoproteins.[ citation needed ]

Baculovirus dispersal pathways in the environment Fmicb-08-01337-g002.jpg
Baculovirus dispersal pathways in the environment

After baculovirus infection, three distinct phases occur:[ citation needed ]

While BV is produced in the late phase, the ODV form is produced in the very late phase, acquiring the envelope from host cell nucleus and embedded in the matrix of occlusion body protein. These occlusion bodies are released when cells lyse to further spread baculovirus infection to next host. The extensive lysis of cells frequently causes the host insect to literally disintegrate, thus the reason for the historic name "wilting disease". The complete ODV-polyhedrin particles are resistant to heat and light inactivation, whereas the naked BV virion is more sensitive to environment.[ citation needed ]

When infecting a caterpillar, the advanced stages of infection cause the host to feed without resting, and then to climb to the higher parts of trees, including exposed places they would normally avoid due to the risk of predators. This is an advantage for the virus since (when the host dissolves) it can drip down onto leaves, which will be consumed by new hosts. [7]

Transmissibility

Another victim of the nuclear polyhedrosis virus. CaterpillarNPV.jpg
Another victim of the nuclear polyhedrosis virus.

The virus is unable to infect humans in the way it does insects, because human stomachs are acid-based and NPV requires an alkaline digestive system in order to replicate. It is possible for the virus crystals to enter human cells, but not to replicate to the point of causing illness. [8]

Structure of the virion

Diagram of a Nucleopolyhedrovirus Nucleopolyhedrovirus.jpg
Diagram of a Nucleopolyhedrovirus

The most studied baculovirus is Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). The virus was originally isolated from the alfalfa looper (a lepidopteran) and contains a 134 kbp genome with 154 open reading frames. The major capsid protein VP39 together with some minor proteins forms the nucleocapsid (21 nm x 260 nm) that encloses the DNA with p6.9 protein.[ citation needed ]

BV acquires its envelope from the cell membrane and requires a glycoprotein, gp64, to be able to spread systemic infection. This protein forms structures called peplomers on one end of the budded virus particle, but is not found on ODVs (although several other proteins are only associated with the ODV form). Some differences also exist in the lipid composition of the viral envelope of the two forms. While the BV envelope consists of phosphatidylserine, ODV contains phosphatidylcholine and phosphatidylethanolamine.[ citation needed ]

A nucleocapsid assembly-essential element (NAE) was identified in the AcMNPV genome. The NAE is an internal cis-element within the ac83 gene. The nucleocapsid assembly is not dependent on the ac83 protein product. [9]

Major envelope glycoprotein gp64

During periods of evolution, the baculoviral envelope glycoproteins have undergone changes. Ld130, also known as baculovirus F-protein from Lymantria dispar (LdMNPV) is suggested to be an ancestral envelope fusion protein which has been replaced by non-orthologous gene replacement with gp64 in AcMNPV, Bombyx mori (BmNPV) and Orgyia pseudotsugata (OpMNPV) while they still retain the ld130 gene.[ citation needed ]

Gp64 is a homotrimeric membrane glycoprotein that is polarly present on the rod-shaped virion. It consists of 512 amino acids (aa) with four glycosylation sites at asparagine residues and has a N-terminal signal sequence (20 aa), oligomerization and fusion domain and a hydrophobic transmembrane domain near the C-terminus (7 aa).[ citation needed ]

It is produced in both early and late phases of the infection cycle with a maximal rate of synthesis occurring in 24–26 h after infection. Trimerization with intermolecular cysteine-bonds seems to be a crucial step for protein transport to cell surface, since only 33% of synthesized protein reaches cell surface, as monomeric gp64 is degraded within the cells.[ citation needed ]

Gp64 is essential for efficient budding of the virion and for the cell-to-cell transmission during the infection cycle, as well as viral entry, i.e. causing viral trophism and endosome-mediated uptake to the cell. The major function of the gp64 envelope protein is to cause the pH-mediated envelope fusion to the endosome. Although gp64 has variety of essential functions, it has been reported that gp64-null baculoviruses can be substituted with other viral glycoproteins such as Ld130, G-protein of Vesicular stomatitis virus. These substitutions will result in functional virons.[ citation needed ]

Applications

Baculovirus expression in insect cells represents a robust method for producing recombinant glycoproteins or membrane proteins. [10] [11] [12] In the early 1990s, a system was developed by Monsanto that allows for easy and fast generation of recombinant baculoviruses. [13] Baculovirus-produced proteins have been in use since 2007 as vaccines against human papillomavirus infection, successfully protecting against cervical cancer. [14] Baculovirus-produced proteins are currently under study as therapeutic cancer vaccines with several immunologic advantages over proteins derived from mammalian sources. [15]

Lymantria dispar (commonly known as the spongy moth), a serious pest of forest trees, has been successfully contained by releasing spongy moth baculovirus (NPV) preparations. Certain species of sawfly ( Neodiprion sertifer, N. lecontei, N. pratti pratti, etc.), have also been successfully controlled by NPV treatments specific to them.[ citation needed ]

Members of the genus Heliothis —cosmopolitan insects that attack at least 30 food- and fibre-yielding crop plants—have been controlled by the application of Baculovirus heliothis. In 1975, the United States Environmental Protection Agency registered the B. heliothis preparations.[ citation needed ]

NPV preparations have also been used commercially against pests such as Trichoplusia (under the biotrol-VTN brand name) and the cotton leafworm (under the biotrol-VSE brand name).[ citation needed ]

Biosafety

Baculoviruses are incapable of replicating within the cells of mammals and plants. [16] They have a restricted range of hosts they can infect that is typically restricted to a limited number of closely related insect species. Because baculoviruses are not harmful to humans, they are considered a safe option for use in research applications. They are also used as biological agents as in the case of the Indian mealmoth, a grain-feeding pest. [17] However, in the scope of biosafety, it must be considered that baculoviruses are harmful, if not lethal to insect populations, as described above. Therefore, their usage should preferably occur in controlled settings limiting the dissemination into the environment.

Taxonomy

The name of this family has been derived from the Latin word baculus, meaning "stick". The family has been divided into four genera: Alphabaculovirus (lepidopteran-specific nucleopolyhedroviruses), Betabaculovirus (lepidopteran-specific granuloviruses), Gammabaculovirus (hymenopteran-specific nucleopolyhedroviruses), and Deltabaculovirus (dipteran-specific nucleopolyhedroviruses). [18]

Nuclear polyhedrosis virus

Nuclear Polyhedrosis Virus (NPV) was once listed by the International Committee on Taxonomy of Viruses as a subgenus of Eubaculovirinae, but the term now refers to 35 species of the family Baculoviridae, mostly alphabaculoviruses, but also one deltabaculovirus and two gammabaculoviruses.[ citation needed ]

The polyhedral capsid from which the virus gets its name is an extremely stable protein crystal that protects the virus in the external environment. It dissolves in the alkaline midgut of moths and butterflies to release the virus particle and infect the larva. [19] An example of an insect that it infects is the fall webworm. [20]

Evolution

Baculoviruses are thought to have evolved from the Nudiviridae family of viruses 310  million years ago. [21]

See also

Related Research Articles

<i>Paramyxoviridae</i> Family of viruses

Paramyxoviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Vertebrates serve as natural hosts. Diseases associated with this family include measles, mumps, and respiratory tract infections. The family has four subfamilies, 17 genera, three of which are unassigned to a subfamily, and 78 species.

<i>Indiana vesiculovirus</i> Species of virus

Indiana vesiculovirus, formerly Vesicular stomatitis Indiana virus is a virus in the family Rhabdoviridae; the well-known Rabies lyssavirus belongs to the same family. VSIV can infect insects, cattle, horses and pigs. It has particular importance to farmers in certain regions of the world where it infects cattle. This is because its clinical presentation is identical to the very important foot and mouth disease virus.

<i>Rhabdoviridae</i> Family of viruses in the order Mononegavirales

Rhabdoviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Vertebrates, invertebrates, plants, fungi and protozoans serve as natural hosts. Diseases associated with member viruses include rabies encephalitis caused by the rabies virus, and flu-like symptoms in humans caused by vesiculoviruses. The name is derived from Ancient Greek rhabdos, meaning rod, referring to the shape of the viral particles. The family has 40 genera, most assigned to three subfamilies.

<i>Hepadnaviridae</i> Family of viruses

Hepadnaviridae is a family of viruses. Humans, apes, and birds serve as natural hosts. There are currently 18 species in this family, divided among 5 genera. Its best-known member is hepatitis B virus. Diseases associated with this family include: liver infections, such as hepatitis, hepatocellular carcinomas, and cirrhosis. It is the sole accepted family in the order Blubervirales.

<span class="mw-page-title-main">Rabies virus</span> Species of virus

Rabies virus, scientific name Rabies lyssavirus, is a neurotropic virus that causes rabies in animals, including humans. It can cause violence, hydrophobia, and fever. Rabies transmission can also occur through the saliva of animals and less commonly through contact with human saliva. Rabies lyssavirus, like many rhabdoviruses, has an extremely wide host range. In the wild it has been found infecting many mammalian species, while in the laboratory it has been found that birds can be infected, as well as cell cultures from mammals, birds, reptiles and insects. Rabies is reported in more than 150 countries and on all continents except Antarctica. The main burden of disease is reported in Asia and Africa, but some cases have been reported also in Europe in the past 10 years, especially in returning travellers.

<i>Bunyavirales</i> Order of RNA viruses

Bunyavirales is an order of segmented negative-strand RNA viruses with mainly tripartite genomes. Member viruses infect arthropods, plants, protozoans, and vertebrates. It is the only order in the class Ellioviricetes. The name Bunyavirales derives from Bunyamwera, where the original type species Bunyamwera orthobunyavirus was first discovered. Ellioviricetes is named in honor of late virologist Richard M. Elliott for his early work on bunyaviruses.

<i>Alphavirus</i> Genus of viruses

Alphavirus is a genus of RNA viruses, the sole genus in the Togaviridae family. Alphaviruses belong to group IV of the Baltimore classification of viruses, with a positive-sense, single-stranded RNA genome. There are 32 alphaviruses, which infect various vertebrates such as humans, rodents, fish, birds, and larger mammals such as horses, as well as invertebrates. Alphaviruses that could infect both vertebrates and arthropods are referred dual-host alphaviruses, while insect-specific alphaviruses such as Eilat virus and Yada yada virus are restricted to their competent arthropod vector. Transmission between species and individuals occurs mainly via mosquitoes, making the alphaviruses a member of the collection of arboviruses – or arthropod-borne viruses. Alphavirus particles are enveloped, have a 70 nm diameter, tend to be spherical, and have a 40 nm isometric nucleocapsid.

<i>Herpesviridae</i> Family of DNA viruses

Herpesviridae is a large family of DNA viruses that cause infections and certain diseases in animals, including humans. The members of this family are also known as herpesviruses. The family name is derived from the Greek word ἕρπειν, referring to spreading cutaneous lesions, usually involving blisters, seen in flares of herpes simplex 1, herpes simplex 2 and herpes zoster (shingles). In 1971, the International Committee on the Taxonomy of Viruses (ICTV) established Herpesvirus as a genus with 23 viruses among four groups. As of 2020, 115 species are recognized, all but one of which are in one of the three subfamilies. Herpesviruses can cause both latent and lytic infections.

<i>Pestivirus</i> Genus of viruses

Pestivirus is a genus of viruses, in the family Flaviviridae. Viruses in the genus Pestivirus infect mammals, including members of the family Bovidae and the family Suidae. There are 11 species in this genus. Diseases associated with this genus include: hemorrhagic syndromes, abortion, and fatal mucosal disease.

The murine leukemia viruses are retroviruses named for their ability to cause cancer in murine (mouse) hosts. Some MLVs may infect other vertebrates. MLVs include both exogenous and endogenous viruses. Replicating MLVs have a positive sense, single-stranded RNA (ssRNA) genome that replicates through a DNA intermediate via the process of reverse transcription.

<span class="mw-page-title-main">Nudivirus</span> Family of viruses

Nudiviruses are animal viruses that constitute the family Nudiviridae. Insects and marine crustaceans serve as natural hosts. There are 11 species in this family, assigned to 4 genera. Diseases associated with this family include: death in larvae, chronic disease in adults.

<span class="mw-page-title-main">BacMam</span> Use of baculovirus to deliver genes to mammalian cells

Baculovirus gene transfer into Mammalian cells (BacMam) is the use of a baculovirus to deliver genes to mammalian cells. Baculoviruses are insect viruses that are typically not capable of infecting mammalian cells; however, they can be modified to express proteins in mammalian cells. Unmodified baculoviruses are able to enter mammalian cells; however, their genes are not expressed unless a recognizable mammalian promoter is incorporated upstream of a gene of interest. Both the unmodified baculovirus and its modified counterpart are unable to replicate in humans, making them non-infectious.

Mason-Pfizer monkey virus (M-PMV), formerly Simian retrovirus (SRV), is a species of retroviruses that usually infect and cause a fatal immune deficiency in Asian macaques. The ssRNA virus appears sporadically in mammary carcinoma of captive macaques at breeding facilities which expected as the natural host, but the prevalence of this virus in feral macaques remains unknown. M-PMV was transmitted naturally by virus-containing body fluids, via biting, scratching, grooming, and fighting. Cross contaminated instruments or equipment (fomite) can also spread this virus among animals.

High Five (BTI-Tn-5B1-4) is an insect cell line that originated from the eggs of the cabbage looper, Trichoplusia ni. It was developed by the Boyce Thompson Institute for Plant Research.

<span class="mw-page-title-main">Early 35 kDa protein</span> Anti-apoptotic viral protein

The Early 35 kDa protein, or P35 in short, is a baculoviral protein that inhibits apoptosis in the cells infected by the virus. Although baculoviruses infect only invertebrates in nature, ectopic expression of P35 in vertebrate animals and cells also results in inhibition of apoptosis, thus indicating a universal mechanism. P35 has been shown to be a caspase inhibitor with a very wide spectrum of activity both in regard to inhibited caspase types and to species in which the mechanism is conserved.

<i>Pneumoviridae</i> Family of viruses

Pneumoviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Humans, cattle, and rodents serve as natural hosts. Respiratory tract infections are associated with member viruses such as human respiratory syncytial virus. There are five species in the family which are divided between the genera Metapneumovirus and Orthopneumovirus. The family used to be considered as a sub-family of Paramyxoviridae, but has been reclassified as of 2016.

Flock House virus (FHV) is in the Alphanodavirus genus of the Nodaviridae family of viruses. Flock House virus was isolated from a grass grub at the Flock House research station in Bulls, New Zealand. FHV is an extensively studied virus and is considered a model system for the study of other non-enveloped RNA viruses owing to its small size and genetic tractability, particularly to study the role of the transiently exposed hydrophobic gamma peptide and the metastability of the viral capsid. FHV can be engineered in insect cell culture allowing for the tailored production of native or mutant authentic virions or virus-like-particles. FHV is a platform for nanotechnology and nanomedicine, for example, for epitope display and vaccine development. Viral entry into host cells occurs via receptor-mediated endocytosis. Receptor binding initiates a sequence of events during which the virus exploits the host environment in order to deliver the viral cargo in to the host cytosol. Receptor binding prompts the meta-stability of the capsid–proteins, the coordinated rearrangements of which are crucial for subsequent steps in the infection pathway. In addition, the transient exposure of a covalently-independent hydrophobic γ-peptide is responsible for breaching cellular membranes and is thus essential for the viral entry of FHV into host cells.

West Caucasian bat lyssavirus (WCBL) is a member of genus Lyssavirus, family Rhabdoviridae and order Mononegavirales. This virus was first isolated from Miniopterus schreibersii, in the western Caucasus Mountains of southeastern Europe in 2002. WCBL is the most divergent form of Lyssavirus, and is found in Miniopterus bats (insectivorous), Rousettus aegyptiacus, and Eidolon helvum. The latter two are both fruit bats. The virus is fragile as it can be inactivated by UV light and chemicals, such as ether, chloroform, and bleach. WCBL has not been known to infect humans thus far.

Yokose virus (YOKV) is in the genus Flavivirus of the family Flaviviridae. Flaviviridae are often found in arthropods, such as mosquitoes and ticks, and may also infect humans. The genus Flavivirus includes over 50 known viruses, including Yellow Fever, West Nile Virus, Zika Virus, and Japanese Encephalitis. Yokose virus is a new member of the Flavivirus family that has only been identified in a few bat species. Bats have been associated with several emerging zoonotic diseases such as Ebola and SARS.

Helicoverpa zea nudivirus 2 is an enveloped, rod-shaped, nonoccluded, double stranded DNA (dsDNA) sexually transmitted virus whose natural host is the corn earworm moth. At about 440 by 90 nm, it is the causative agent of the only sexually transmitted viral disease of any insect. It was originally identified in a colony of corn earworm moths established and maintained in Stoneville, Mississippi, U.S. and was found to be responsible for the sterility of those infected.

References

  1. Harrison, RL; Herniou, EA; Jehle, JA; Theilmann, DA; Burand, JP; Becnel, JJ; Krell, PJ; van Oers, MM; Mowery, JD; Bauchan, GR; Ictv Report, Consortium (September 2018). "ICTV Virus Taxonomy Profile: Baculoviridae". The Journal of General Virology. 99 (9): 1185–1186. doi: 10.1099/jgv.0.001107 . PMID   29947603.
  2. "Viral Zone". ExPASy. Archived from the original on 2 May 2017. Retrieved 15 June 2015.
  3. "Virus Taxonomy: 2020 Release". International Committee on Taxonomy of Viruses (ICTV). March 2021. Archived from the original on 20 March 2020. Retrieved 12 May 2021.
  4. Hofmann, C.; Sandig, V.; Jennings, G.; Rudolph, M.; Schlag, P.; Strauss, M. (1995). "Efficient Gene Transfer into Human Hepatocytes by Baculovirus Vectors". Proceedings of the National Academy of Sciences. 92 (22): 10099–10103. Bibcode:1995PNAS...9210099H. doi: 10.1073/pnas.92.22.10099 . PMC   40743 . PMID   7479733.
  5. "Baculovirus - Baculovirus Lab Techniques" . Retrieved 16 August 2024.
  6. Lackner, A; Genta, K; Koppensteiner, H; Herbacek, I; Holzmann, K; Spiegl-Kreinecker, S; Berger, W; Grusch, M (2008). "A bicistronic baculovirus vector for transient and stable protein expression in mammalian cells". Analytical Biochemistry. 380 (1): 146–8. doi:10.1016/j.ab.2008.05.020. PMID   18541133.
  7. Zimmer, Carl (November 2014). "Mindsuckers – Meet Nature's Nightmare". National Geographic. Archived from the original on 18 October 2014.
  8. Chiu, E; Coulibaly, F; Metcalf, P (2012). "Insect virus polyhedra, infectious protein crystals that contain virus particles". Curr Opin Struct Biol. 22 (2): 234–40. doi:10.1016/j.sbi.2012.02.003. PMID   22475077.
  9. Huang, Zhihong; Pan, Mengjia; Zhu, Silei; Zhang, Hao; Wu, Wenbi; Yuan, Meijin; Yang, Kai (2017). "The Autographa californica Multiple Nucleopolyhedrovirus ac83 Gene Contains a cis-Acting Element That Is Essential for Nucleocapsid Assembly". Journal of Virology. 91 (5). doi:10.1128/JVI.02110-16. PMC   5309959 . PMID   28031366.
  10. Altmann, Friedrich; Staudacher, E; Wilson, IB; März, L (1999). "Insect cells as hosts for the expression of recombinant glycoproteins". Glycoconjugate Journal. 16 (2): 109–23. doi:10.1023/A:1026488408951. PMID   10612411. S2CID   34863069.
  11. Kost, T; Condreay, JP (1999). "Recombinant baculoviruses as expression vectors for insect and mammalian cells". Current Opinion in Biotechnology. 10 (5): 428–33. doi:10.1016/S0958-1669(99)00005-1. PMID   10508635.
  12. Madeo, Marianna; Carrisi, Chiara; Iacopetta, Domenico; Capobianco, Loredana; Cappello, Anna Rita; Bucci, Cecilia; Palmieri, Ferdinando; Mazzeo, Giancarlo; Montalto, Anna (23 July 2009). "Abundant expression and purification of biologically active mitochondrial citrate carrier in baculovirus-infected insect cells". Journal of Bioenergetics and Biomembranes. 41 (3): 289–297. doi:10.1007/s10863-009-9226-6. ISSN   0145-479X. PMID   19629661. S2CID   44943721.
  13. Luckow, V A; Lee, S C; Barry, G F; Olins, P O (1993). "Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli". Journal of Virology. 67 (8): 4566–4579. doi:10.1128/jvi.67.8.4566-4579.1993. ISSN   0022-538X. PMC   237841 . PMID   8392598.
  14. "Cervarix : European Public Assessment Report – Scientific Discussion" (PDF). European Medical Agency. 2007.
  15. Betting, David J.; Mu, Xi Y.; Kafi, Kamran; McDonnel, Desmond; Rosas, Francisco; Gold, Daniel P.; Timmerman, John M. (2009). "Enhanced immune stimulation by a therapeutic lymphoma tumor antigen vaccine produced in insect cells involves mannose receptor targeting to antigen presenting cells". Vaccine. 27 (2): 250–9. doi:10.1016/j.vaccine.2008.10.055. PMC   2683685 . PMID   19000731.
  16. Ignoffo CM. (1975) Baculoviruses for Insect Pest Control: Safety Considerations, Summers M, Engler R, Falcon LA, Vail PV (eds.) American Society for Microbiology, Washington DC, p52
  17. Sait, S.M.; Begon, M.; Thompson, D.J. (1994). "The Effects of a Sublethal Baculovirus Infection in the Indian Meal Moth, Plodia interpunctella". Journal of Animal Ecology. 63 (3): 541–550. Bibcode:1994JAnEc..63..541S. doi:10.2307/5220. JSTOR   5220.
  18. Jehle, JA; Blissard, GW; Bonning, BC; Cory, JS; Herniou, EA; Rohrmann, GF; Theilmann, DA; Thiem, SM; Vlak, JM; et al. (2006). "On the classification and nomenclature of baculoviruses: a proposal for revision". Arch Virol. 151 (7): 1257–1266. doi:10.1007/s00705-006-0763-6. PMID   16648963. S2CID   6293565. Archived from the original on 24 February 2023. Retrieved 1 February 2019.
  19. Chiu E.; Coulibaly F.; Metcalf P. (April 2012). "Insect virus polyhedra, infectious protein crystals that contain virus particles". Curr Opin Struct Biol. 22 (2): 234–40. doi:10.1016/j.sbi.2012.02.003. PMID   22475077.
  20. Boucias, D. G.; Nordin, G. L. (1 July 1977). "Interinstar susceptibility of the fall webworm, Hyphantria cunea, to its nucleopolyhedrosis and granulosis viruses". Journal of Invertebrate Pathology. 30 (1): 68–75. Bibcode:1977JInvP..30...68B. doi:10.1016/0022-2011(77)90038-6.
  21. Theze, J.; Bezier, A.; Periquet, G.; Drezen, J.-M.; Herniou, E. A. (2011). "Paleozoic origin of insect large dsDNA viruses". Proceedings of the National Academy of Sciences. 108 (38): 15931–5. Bibcode:2011PNAS..10815931T. doi: 10.1073/pnas.1105580108 . PMC   3179036 . PMID   21911395.

General sources

Further reading