ANGPTL3

Last updated
ANGPTL3
Identifiers
Aliases ANGPTL3 , ANG-5, ANGPT5, ANL3, FHBL2, angiopoietin like 3
External IDs OMIM: 604774 MGI: 1353627 HomoloGene: 8499 GeneCards: ANGPTL3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_014495

NM_013913

RefSeq (protein)

NP_055310

NP_038941

Location (UCSC) Chr 1: 62.6 – 62.61 Mb Chr 4: 98.92 – 98.93 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Angiopoietin-like 3, also known as ANGPTL3, is a protein that in humans is encoded by the ANGPTL3 gene. [5] [6]

Contents

Function

The protein encoded by this gene is a member of the angiopoietin-like family of secreted factors. It is expressed predominantly in the liver, and has the characteristic structure of angiopoietins, consisting of a signal peptide, N-terminal coiled-coil domain, and the C-terminal fibrinogen (FBN)-like domain. The FBN-like domain in angiopoietin-like 3 protein was shown to bind alpha-5/beta-3 integrins, and this binding induced endothelial cell adhesion and migration. This protein may also play a role in the regulation of angiogenesis. [5]

Angptl3 also acts as dual inhibitor of lipoprotein lipase (LPL) and endothelial lipase (EL), [7] thereby increasing plasma triglyceride, LDL cholesterol and HDL cholesterol in mice and humans. [7]

ANGPTL3 inhibits endothelial lipase hydrolysis of HDL-phospholipid (PL), thereby increasing HDL-PL levels.[ citation needed ] Circulating PL-rich HDL particles have high cholesterol efflux abilities.[ citation needed ]

Angptl3 plays a major role in promoting uptake of circulating triglycerides into white adipose tissue in the fed state, [8] likely through activation by Angptl8, a feeding-induced hepatokine, [9] [10] to inhibit postprandial LPL activity in cardiac and skeletal muscles, [11] as suggested by the ANGPTL3-4-8 model. [12]

Clinical significance

In human, ANGPTL3 is a determinant factor of HDL level and positively correlates with plasma HDL cholesterol.[ citation needed ]

In humans with genetic loss-of-function variants in one copy of ANGPTL3, the serum LDL-C levels are reduced. In those with loss-of-function variants in both copies of ANGPTL3, low LDL-C, low HDL-C, and low triglycerides are seen ("familial combined hypolipidemia"). [13]

Related Research Articles

High-density lipoprotein (HDL) is one of the five major groups of lipoproteins. Lipoproteins are complex particles composed of multiple proteins which transport all fat molecules (lipids) around the body within the water outside cells. They are typically composed of 80–100 proteins per particle and transporting up to hundreds of fat molecules per particle.

Lipoprotein

A lipoprotein is a biochemical assembly whose primary function is to transport hydrophobic lipid molecules in water, as in blood plasma or other extracellular fluids. They consist of a triglyceride and cholesterol center, surrounded by a phospholipid outer shell, with the hydrophilic portions oriented outward toward the surrounding water and lipophilic portions oriented inward toward the lipid center. A special kind of protein, called apolipoprotein, is embedded in the outer shell, both stabilising the complex and giving it a functional identity that determines its role.

Lipoprotein lipase Mammalian protein found in Homo sapiens

Lipoprotein lipase (LPL) is a member of the lipase gene family, which includes pancreatic lipase, hepatic lipase, and endothelial lipase. It is a water-soluble enzyme that hydrolyzes triglycerides in lipoproteins, such as those found in chylomicrons and very low-density lipoproteins (VLDL), into two free fatty acids and one monoacylglycerol molecule. It is also involved in promoting the cellular uptake of chylomicron remnants, cholesterol-rich lipoproteins, and free fatty acids. LPL requires ApoC-II as a cofactor.

Hyperlipidemia is abnormally elevated levels of any or all lipids or lipoproteins in the blood. The term hyperlipidemia refers to the laboratory finding itself and is also used as an umbrella term covering any of various acquired or genetic disorders that result in that finding. Hyperlipidemia represents a subset of dyslipidemia and a superset of hypercholesterolemia. Hyperlipidemia is usually chronic and requires ongoing medication to control blood lipid levels.

LDL receptor

The low-density lipoprotein (LDL) receptor (LDL-R) is a mosaic protein of 839 amino acids that mediates the endocytosis of cholesterol-rich LDL. It is a cell-surface receptor that recognizes the apoprotein B100, which is embedded in the outer phospholipid layer of LDL particles. The receptor also recognizes the apoE protein found in chylomicron remnants and VLDL remnants (IDL). In humans, the LDL receptor protein is encoded by the LDLR gene on chromosome 19. It belongs to the low density lipoprotein receptor gene family. It is most significantly expressed in bronchial epithelial cells and adrenal gland and cortex tissue.

Angiopoietin Protein family

Angiopoietin is part of a family of vascular growth factors that play a role in embryonic and postnatal angiogenesis. Angiopoietin signaling most directly corresponds with angiogenesis, the process by which new arteries and veins form from preexisting blood vessels. Angiogenesis proceeds through sprouting, endothelial cell migration, proliferation, and vessel destabilization and stabilization. They are responsible for assembling and disassembling the endothelial lining of blood vessels. Angiopoietin cytokines are involved with controlling microvascular permeability, vasodilation, and vasoconstriction by signaling smooth muscle cells surrounding vessels. There are now four identified angiopoietins: ANGPT1, ANGPT2, ANGPTL3, ANGPT4.

Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown or storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food or are synthesized by the liver. Lipogenesis is the process of synthesizing these fats. The majority of lipids found in the human body from ingesting food are triglycerides and cholesterol. Other types of lipids found in the body are fatty acids and membrane lipids. Lipid metabolism is often considered as the digestion and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat. Vertebrates use both sources of fat to produce energy for organs such as the heart to function. Since lipids are hydrophobic molecules, they need to be solubilized before their metabolism can begin. Lipid metabolism often begins with hydrolysis, which occurs with the help of various enzymes in the digestive system. Lipid metabolism also occurs in plants, though the processes differ in some ways when compared to animals. The second step after the hydrolysis is the absorption of the fatty acids into the epithelial cells of the intestinal wall. In the epithelial cells, fatty acids are packaged and transported to the rest of the body.

Hypolipoproteinemia, hypolipidemia, or hypolipidaemia is a form of dyslipidemia that is defined by abnormally lowered levels of any or all lipids and/or lipoproteins in the blood. It occurs through genetic disease, malnutrition, malabsorption, wasting disease, cancer, hyperthyroidism, and liver disease.

Apolipoprotein C-IV

Apolipoprotein C-IV, also known as apolipoprotein C4, is a protein that in humans is encoded by the APOC4 gene.

Hepatic lipase

Hepatic lipase (HL), also called hepatic triglyceride lipase (HTGL) or LIPC, is a form of lipase, catalyzing the hydrolysis of triacylglyceride. Hepatic lipase is coded by chromosome 15 and its gene is also often referred to as HTGL or LIPC. Hepatic lipase is expressed mainly in liver cells, known as hepatocytes, and endothelial cells of the liver. The hepatic lipase can either remain attached to the liver or can unbind from the liver endothelial cells and is free to enter the body's circulation system. When bound on the endothelial cells of the liver, it is often found bound to HSPG, heparan sulfate proteoglycans (HSPG), keeping HL inactive and unable to bind to HDL or IDL. When it is free in the bloodstream, however, it is found associated with HDL to maintain it inactive. This is because the triacylglycerides in HDL serve as a substrate, but the lipoprotein contains proteins around the triacylglycerides that can prevent the triacylglycerides from being broken down by HL.

Endothelial lipase (LIPG) is a form of lipase secreted by vascular endothelial cells in tissues with high metabolic rates and vascularization, such as the liver, lung, kidney, and thyroid gland. The LIPG enzyme is a vital component to many biological process. These processes include lipoprotein metabolism, cytokine expression, and lipid composition in cells. Unlike the lipases that hydrolyze Triglycerides, endothelial lipase primarily hydrolyzes phospholipids. Due to the hydrolysis specificity, endothelial lipase contributes to multiple vital systems within the body. On the contrary to the beneficial roles that LIPG plays within the body, endothelial lipase is thought of to play a potential role in cancer and inflammation. Knowledge obtained in vitro and in vivo suggest the relations to these conditions, but human interaction knowledge lacks due to the recent discovery of endothelial lipase. Endothelial lipase was first characterized in 1999. The two independent research groups which are notable for this discovery cloned the endothelial lipase gene and identified the novel lipase secreted from endothelial cells. The anti-Atherosclerosis opportunity through alleviating plaque blockage and prospective ability to raise High-density lipoprotein (HDL) have gained endothelial lipase recognition.

APOA5

Apolipoprotein A-V is a protein that in humans is encoded by the APOA5 gene on chromosome 11. It is significantly expressed in liver. The protein encoded by this gene is an apolipoprotein and an important determinant of plasma triglyceride levels, a major risk factor for coronary artery disease. It is a component of several lipoprotein fractions including VLDL, HDL, chylomicrons. It is believed that apoA-V affects lipoprotein metabolism by interacting with LDL-R gene family receptors. Considering its association with lipoprotein levels, APOA5 is implicated in metabolic syndrome. The APOA5 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.

OLR1

Oxidized low-density lipoprotein receptor 1 also known as lectin-type oxidized LDL receptor 1 (LOX-1) is a protein that in humans is encoded by the OLR1 gene.

LRP1

Low density lipoprotein receptor-related protein 1 (LRP1), also known as alpha-2-macroglobulin receptor (A2MR), apolipoprotein E receptor (APOER) or cluster of differentiation 91 (CD91), is a protein forming a receptor found in the plasma membrane of cells involved in receptor-mediated endocytosis. In humans, the LRP1 protein is encoded by the LRP1 gene. LRP1 is also a key signalling protein and, thus, involved in various biological processes, such as lipoprotein metabolism and cell motility, and diseases, such as neurodegenerative diseases, atherosclerosis, and cancer.

ANGPTL4

Angiopoietin-like 4 is a protein that in human is encoded by the ANGPTL4 gene. Alternatively spliced transcript variants encoding different isoforms have been described. This gene was previously referred to as ANGPTL2, HFARP, PGAR, or FIAF but has been renamed ANGPTL4.

Angiopoietin-related protein 1 Protein-coding gene in the species Homo sapiens

Angiopoietin-related protein 1 also known as angiopoietin-3 (ANG-3) is a protein that in humans is encoded by the ANGPTL1 gene.

Angiopoietin-related protein 2 Protein-coding gene in the species Homo sapiens

Angiopoietin-related protein 2 also known as angiopoietin-like protein 2 is a protein that in humans is encoded by the ANGPTL2 gene.

The chronic endothelial injury hypothesis is one of two major mechanisms postulated to explain the underlying cause of atherosclerosis and coronary heart disease (CHD), the other being the lipid hypothesis. Although an ongoing debate involving connection between dietary lipids and CHD sometimes portrays the two hypotheses as being opposed, they are in no way mutually exclusive. Moreover, since the discovery of the role of LDL cholesterol (LDL-C) in the pathogenesis of atherosclerosis, the two hypotheses have become tightly linked by a number of molecular and cellular processes.

ANGPTL8

ANGPTL8 is a protein that in humans is encoded by the C19orf80 gene.

GPIHBP1 Protein-coding gene in the species Homo sapiens

Glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 (GPI-HBP1) also known as high density lipoprotein-binding protein 1 is a protein that in humans is encoded by the GPIHBP1 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000132855 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028553 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: ANGPTL3 angiopoietin-like 3".
  6. Conklin D, Gilbertson D, Taft DW, Maurer MF, Whitmore TE, Smith DL, et al. (December 1999). "Identification of a mammalian angiopoietin-related protein expressed specifically in liver". Genomics. 62 (3): 477–82. doi:10.1006/geno.1999.6041. PMID   10644446. S2CID   16567474.
  7. 1 2 Tikka A, Jauhiainen M (May 2016). "The role of ANGPTL3 in controlling lipoprotein metabolism". Endocrine. 52 (2): 187–93. doi:10.1007/s12020-015-0838-9. PMC   4824806 . PMID   26754661.
  8. Wang Y, McNutt MC, Banfi S, Levin MG, Holland WL, Gusarova V, et al. (September 2015). "Hepatic ANGPTL3 regulates adipose tissue energy homeostasis". Proceedings of the National Academy of Sciences of the United States of America. 112 (37): 11630–5. Bibcode:2015PNAS..11211630W. doi: 10.1073/pnas.1515374112 . PMC   4577179 . PMID   26305978.
  9. Zhang R (August 2012). "Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels". Biochemical and Biophysical Research Communications. 424 (4): 786–92. doi:10.1016/j.bbrc.2012.07.038. PMID   22809513.
  10. Ren G, Kim JY, Smas CM (August 2012). "Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism". American Journal of Physiology. Endocrinology and Metabolism. 303 (3): E334-51. doi:10.1152/ajpendo.00084.2012. PMC   3423120 . PMID   22569073.
  11. Fu Z, Abou-Samra AB, Zhang R (December 2015). "A lipasin/Angptl8 monoclonal antibody lowers mouse serum triglycerides involving increased postprandial activity of the cardiac lipoprotein lipase". Scientific Reports. 5: 18502. Bibcode:2015NatSR...518502F. doi:10.1038/srep18502. PMC   4685196 . PMID   26687026.
  12. Zhang R (April 2016). "The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking". Open Biology. 6 (4): 150272. doi:10.1098/rsob.150272. PMC   4852456 . PMID   27053679. Archived from the original on 2018-08-04. Retrieved 2016-04-15.
  13. Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, et al. (December 2010). "Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia". The New England Journal of Medicine. 363 (23): 2220–7. doi:10.1056/NEJMoa1002926. PMC   3008575 . PMID   20942659.

Further reading