SATB1

Last updated
SATB1
Protein SATB1 PDB 1yse.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SATB1 , SATB homeobox 1, DEFDA, KTZSL
External IDs OMIM: 602075 MGI: 105084 HomoloGene: 2232 GeneCards: SATB1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC) Chr 3: 18.35 – 18.45 Mb Chr 17: 52.04 – 52.14 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

SATB1 (special AT-rich sequence-binding protein-1) is a protein which in humans is encoded by the SATB1 gene. [5] It is a dimeric/tetrameric transcription factor [6] with multiple DNA binding domains (CUT1, CUT2 and a Homeobox domain). SATB1 specifically binds to AT-rich DNA sequences with high unwinding propensity [7] called base unpairing regions (BURs), containing matrix attachment regions (MARs). [8] [9] [10] [11]

Function

SATB1 is as a key factor for regulating spatial genome organization and subsequently integrating higher-order chromatin architecture with gene regulation. [12] By binding to MARs and tethering these to the nuclear matrix, SATB1 creates chromatin loops. [13] [14] [15] By changing the chromatin-loop architecture SATB1 is able to change gene transcription. [16] The majority of SATB1 binding sites in the DNA are occupied by CTCF as well, [17] another important chromatin organizer.

Immune system

SATB1 has a multitude of roles in the development of T cells.

SATB1 plays a role in controlling expression of lineage-specific factors during T cell development, including ThPOK, Runx3, CD4, CD8, and Treg factor Foxp3. SATB1-deficient thymocytes enter inappropriate T lineages and fail to generate the NKT and Treg subsets. [18] The Treg deficiency subsequently causes an auto-immune phenotype in Satb1-deficient mouse models. [19] The auto-immune phenotype is associated with loss of SATB1-dependent spatial rearrangement of the TCRα enhancer and the TCR locus, controlling TCR recombination [20] via downregulation of the Rag1 and Rag2 genes. [21]

Moreover, SATB1 represses IL-2Ralpha and IL-2 expression by recruitment ofHDAC1 as part of the NuRD chromatin remodeling complex to a SATB1-bound site in the IL-2Ralpha and IL-2 locus, [22] [23] regulating T cell cytokine expression.

Other tissues

SATB1 has been described to play a role in a variety of different cellular processes, including epidermal differentiation, [24] brain development, [25] X-chromosome inactivation, [26] and embryonic stem cell differentiation. [27]

Structure

SATB1 contains a ULD, CUTL, CUT1-CUT2 tandem and homeobox domain.

The ULD and CUTL domains at the N-terminal are important for tetramerization and subsequent DNA-binding of SATB1. [28] This N-terminal region can be cleaved off by caspase-6 [29] [30] and caspase-3 [31] during apoptosis, resulting in dissociation from the chromatin.

The CUT1 domain contains a five-helix structure that is crucial for SATB1 binding to MARs with the third helix deeply entering the major groove of the DNA and making direct contacts with the bases. [10] While CUT1 is essential for binding to MAR-sites, the CUT2 domain is dispensable. [9]

The SATB1 homeobox domain confers poor DNA-binding ability by itself, but has been found to increase the DNA-binding affinity and specificity of SATB1 in combination with the CUT domains. [11] [9]

Clinical significance

Rare neurodevelopmental disorders

Rare high-penetrant heterozygous variants in SATB1 have been identified in neurodevelopmental disorder. [32]

Missense mutations in one of the DNA-binding domains (CUT1 and CUT2) cause a neurodevelopmental syndrome characterized by global developmental delay, moderate to severe intellectual disability, dysmorphic features, teeth abnormalities and early-onset epilepsy (den Hoed-de Boer-Voisin syndrome; DHDBV). [33]

Nonsense and frameshift mutations are associated with a distinct neurodevelopmental condition characterized by mild global developmental delay with variably impaired intellectual development (DEvelopmental delay with dysmorphic Facies and Dental Anomalies; DEFDA). [34]

Cancer

Higher expression levels of SATB1 have been described to promote tumor growth in breast cancer, [35] glioma, [36] prostate cancer, [37] liver cancer [38] and ovarian cancer, [39] and SATB1 levels have prognostic significance in some of these forms of cancer. Indeed, lowering SATB1 levels have been shown to inhibit proliferation of osteocarcoma [40] and lung adenocarcinoma cells. [41]

In contrast, in CD8+ and CD4 + T cells, Satb1 has been demonstrated to be crucial for anti-tumor immunity by regulating PD-1 expression. [42] T-cells that do not express Satb1 were shown to have less anti-tumor activity, [42] and mice lacking Satb1 expression in CD4+ T cells develop intra-tumoral tertiary lymphoid structures. [43]

Interactions

SATB1 has been shown to interact with:

Related Research Articles

Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in reinforcing the DNA during cell division, preventing DNA damage, and regulating gene expression and DNA replication. During mitosis and meiosis, chromatin facilitates proper segregation of the chromosomes in anaphase; the characteristic shapes of chromosomes visible during this stage are the result of DNA being coiled into highly condensed chromatin.

A regulatory sequence is a segment of a nucleic acid molecule which is capable of increasing or decreasing the expression of specific genes within an organism. Regulation of gene expression is an essential feature of all living organisms and viruses.

In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is transcribed. This control allows the cell or organism to respond to a variety of intra- and extracellular signals and thus mount a response. Some examples of this include producing the mRNA that encode enzymes to adapt to a change in a food source, producing the gene products involved in cell cycle specific activities, and producing the gene products responsible for cellular differentiation in multicellular eukaryotes, as studied in evolutionary developmental biology.

<span class="mw-page-title-main">CTCF</span> Transcription factor

Transcriptional repressor CTCF also known as 11-zinc finger protein or CCCTC-binding factor is a transcription factor that in humans is encoded by the CTCF gene. CTCF is involved in many cellular processes, including transcriptional regulation, insulator activity, V(D)J recombination and regulation of chromatin architecture.

<span class="mw-page-title-main">SIN3A</span> Protein-coding gene in the species Homo sapiens

Paired amphipathic helix protein Sin3a is a protein that in humans is encoded by the SIN3A gene.

<span class="mw-page-title-main">GATA3</span> Protein-coding gene in the species Homo sapiens

GATA3 is a transcription factor that in humans is encoded by the GATA3 gene. Studies in animal models and humans indicate that it controls the expression of a wide range of biologically and clinically important genes.

<span class="mw-page-title-main">CUTL1</span> Protein-coding gene in the species Homo sapiens

Cux1 is a homeodomain protein that in humans is encoded by the CUX1 gene.

<span class="mw-page-title-main">SMARCA5</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 is a protein that in humans is encoded by the SMARCA5 gene.

<span class="mw-page-title-main">CHD3</span> Protein-coding gene in the species Homo sapiens

Chromodomain-helicase-DNA-binding protein 3 is an enzyme that in humans is encoded by the CHD3 gene.

<span class="mw-page-title-main">CHD4</span> Protein-coding gene in the species Homo sapiens

Chromodomain-helicase-DNA-binding protein 4 is an enzyme that in humans is encoded by the CHD4 gene. CHD4 is the core nucleosome-remodelling component of the Nucleosome Remodelling and Deacetylase (NuRD) complex.

<span class="mw-page-title-main">MTA2</span> Protein-coding gene in the species Homo sapiens

Metastasis-associated protein MTA2 is a protein that in humans is encoded by the MTA2 gene.

<span class="mw-page-title-main">KIN (gene)</span> Protein-coding gene in the species Homo sapiens

DNA/RNA-binding protein KIN17 is a protein that in humans is encoded by the KIN gene.

<span class="mw-page-title-main">CHD8</span> Protein-coding gene in the species Homo sapiens

Chromodomain-helicase-DNA-binding protein 8 is an enzyme that in humans is encoded by the CHD8 gene.

Bromodomain adjacent to zinc finger domain protein 1A is a protein that in humans is encoded by the BAZ1A gene.

<span class="mw-page-title-main">HMGN3</span> Protein-coding gene in the species Homo sapiens

High mobility group nucleosome-binding domain-containing protein 3 is a protein that in humans is encoded by the HMGN3 gene.

Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell, known as the epigenome. The field is analogous to genomics and proteomics, which are the study of the genome and proteome of a cell. Epigenetic modifications are reversible modifications on a cell's DNA or histones that affect gene expression without altering the DNA sequence. Epigenomic maintenance is a continuous process and plays an important role in stability of eukaryotic genomes by taking part in crucial biological mechanisms like DNA repair. Plant flavones are said to be inhibiting epigenomic marks that cause cancers. Two of the most characterized epigenetic modifications are DNA methylation and histone modification. Epigenetic modifications play an important role in gene expression and regulation, and are involved in numerous cellular processes such as in differentiation/development and tumorigenesis. The study of epigenetics on a global level has been made possible only recently through the adaptation of genomic high-throughput assays.

<span class="mw-page-title-main">Epigenome editing</span>

Epigenome editing or epigenome engineering is a type of genetic engineering in which the epigenome is modified at specific sites using engineered molecules targeted to those sites. Whereas gene editing involves changing the actual DNA sequence itself, epigenetic editing involves modifying and presenting DNA sequences to proteins and other DNA binding factors that influence DNA function. By "editing” epigenomic features in this manner, researchers can determine the exact biological role of an epigenetic modification at the site in question.

H3K4me3 is an epigenetic modification to the DNA packaging protein Histone H3 that indicates tri-methylation at the 4th lysine residue of the histone H3 protein and is often involved in the regulation of gene expression. The name denotes the addition of three methyl groups (trimethylation) to the lysine 4 on the histone H3 protein.

<span class="mw-page-title-main">Nuclear organization</span> Spatial distribution of chromatin within a cell nucleus

Nuclear organization refers to the spatial distribution of chromatin within a cell nucleus. There are many different levels and scales of nuclear organisation. Chromatin is a higher order structure of DNA.

Sanjeev Anant Galande is an Indian cell biologist, epigeneticist, academic, former Chair of Biology and the Dean of Research and Development at the Indian Institute of Science Education and Research, Pune He heads the Laboratory of Chromatin Biology and Epigenetics at Indian Institute of Science Education and Research, Pune. He is the founder of the Centre of Excellence in Epigenetics at IISER Pune and is known for his studies on higher-order chromatin architecture and how it influences spatiotemporal changes in gene expression. He is an elected fellow of the Indian National Science Academy and the Indian Academy of Sciences and a recipient of the National Bioscience Award for Career Development of the Department of Biotechnology. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 2010, for his contributions to biological sciences.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000182568 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000023927 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: SATB1 SATB homeobox 1".
  6. Nakagomi K, Kohwi Y, Dickinson LA, Kohwi-Shigematsu T (March 1994). "A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1". Molecular and Cellular Biology. 14 (3): 1852–1860. doi:10.1128/MCB.14.3.1852. PMC   358543 . PMID   8114718.
  7. Bode J, Kohwi Y, Dickinson L, Joh T, Klehr D, Mielke C, Kohwi-Shigematsu T (January 1992). "Biological significance of unwinding capability of nuclear matrix-associating DNAs". Science. 255 (5041): 195–197. Bibcode:1992Sci...255..195B. doi:10.1126/science.1553545. PMID   1553545.
  8. Dickinson LA, Joh T, Kohwi Y, Kohwi-Shigematsu T (August 1992). "A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition". Cell. 70 (4): 631–645. doi:10.1016/0092-8674(92)90432-c. PMID   1505028. S2CID   41115832.
  9. 1 2 3 Dickinson LA, Dickinson CD, Kohwi-Shigematsu T (April 1997). "An atypical homeodomain in SATB1 promotes specific recognition of the key structural element in a matrix attachment region". The Journal of Biological Chemistry. 272 (17): 11463–11470. doi: 10.1074/jbc.272.17.11463 . PMID   9111059.
  10. 1 2 Yamasaki K, Akiba T, Yamasaki T, Harata K (2007-07-25). "Structural basis for recognition of the matrix attachment region of DNA by transcription factor SATB1". Nucleic Acids Research. 35 (15): 5073–5084. doi:10.1093/nar/gkm504. PMC   1976457 . PMID   17652321.
  11. 1 2 Ghosh RP, Shi Q, Yang L, Reddick MP, Nikitina T, Zhurkin VB, et al. (July 2019). "Satb1 integrates DNA binding site geometry and torsional stress to differentially target nucleosome-dense regions". Nature Communications. 10 (1): 3221. Bibcode:2019NatCo..10.3221G. doi:10.1038/s41467-019-11118-8. PMC   6642133 . PMID   31324780.
  12. Pavan Kumar P, Purbey PK, Sinha CK, Notani D, Limaye A, Jayani RS, Galande S (April 2006). "Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo". Molecular Cell. 22 (2): 231–243. doi: 10.1016/j.molcel.2006.03.010 . PMID   16630892.
  13. Cai S, Han HJ, Kohwi-Shigematsu T (May 2003). "Tissue-specific nuclear architecture and gene expression regulated by SATB1". Nature Genetics. 34 (1): 42–51. doi:10.1038/ng1146. PMID   12692553. S2CID   974648.
  14. Cai S, Lee CC, Kohwi-Shigematsu T (November 2006). "SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes". Nature Genetics. 38 (11): 1278–1288. doi:10.1038/ng1913. PMID   17057718. S2CID   8540592.
  15. Galande S, Purbey PK, Notani D, Kumar PP (October 2007). "The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1". Current Opinion in Genetics & Development. Differentiation and gene regulation. 17 (5): 408–414. doi:10.1016/j.gde.2007.08.003. PMID   17913490.
  16. Kumar PP, Bischof O, Purbey PK, Notani D, Urlaub H, Dejean A, Galande S (January 2007). "Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus". Nature Cell Biology. 9 (1): 45–56. doi:10.1038/ncb1516. hdl: 11858/00-001M-0000-0012-E256-8 . PMID   17173041. S2CID   23337965.
  17. Wang B, Ji L, Bian Q (March 2023). "SATB1 regulates 3D genome architecture in T cells by constraining chromatin interactions surrounding CTCF-binding sites". Cell Reports. 42 (4): 112323. doi: 10.1016/j.celrep.2023.112323 . PMID   37000624. S2CID   257856787.
  18. Kakugawa K, Kojo S, Tanaka H, Seo W, Endo TA, Kitagawa Y, et al. (May 2017). "Essential Roles of SATB1 in Specifying T Lymphocyte Subsets". Cell Reports. 19 (6): 1176–1188. doi: 10.1016/j.celrep.2017.04.038 . PMID   28494867.
  19. Kitagawa Y, Ohkura N, Kidani Y, Vandenbon A, Hirota K, Kawakami R, et al. (February 2017). "Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment". Nature Immunology. 18 (2): 173–183. doi:10.1038/ni.3646. PMC   5582804 . PMID   27992401.
  20. Zelenka T, Klonizakis A, Tsoukatou D, Papamatheakis DA, Franzenburg S, Tzerpos P, et al. (November 2022). "The 3D enhancer network of the developing T cell genome is shaped by SATB1". Nature Communications. 13 (1): 6954. Bibcode:2022NatCo..13.6954Z. doi:10.1038/s41467-022-34345-y. PMC   9663569 . PMID   36376298.
  21. Hao B, Naik AK, Watanabe A, Tanaka H, Chen L, Richards HW, et al. (May 2015). "An anti-silencer- and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development". The Journal of Experimental Medicine. 212 (5): 809–824. doi:10.1084/jem.20142207. PMC   4419350 . PMID   25847946.
  22. Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T (October 2002). "SATB1 targets chromatin remodelling to regulate genes over long distances". Nature. 419 (6907): 641–645. Bibcode:2002Natur.419..641Y. doi:10.1038/nature01084. PMID   12374985. S2CID   25822700.
  23. Kumar PP, Purbey PK, Ravi DS, Mitra D, Galande S (March 2005). "Displacement of SATB1-bound histone deacetylase 1 corepressor by the human immunodeficiency virus type 1 transactivator induces expression of interleukin-2 and its receptor in T cells". Molecular and Cellular Biology. 25 (5): 1620–1633. doi:10.1128/MCB.25.5.1620-1633.2005. PMC   549366 . PMID   15713622.
  24. Fessing MY, Mardaryev AN, Gdula MR, Sharov AA, Sharova TY, Rapisarda V, et al. (September 2011). "p63 regulates Satb1 to control tissue-specific chromatin remodeling during development of the epidermis". The Journal of Cell Biology. 194 (6): 825–839. doi:10.1083/jcb.201101148. PMC   3207288 . PMID   21930775.
  25. Balamotis MA, Tamberg N, Woo YJ, Li J, Davy B, Kohwi-Shigematsu T, Kohwi Y (January 2012). "Satb1 ablation alters temporal expression of immediate early genes and reduces dendritic spine density during postnatal brain development". Molecular and Cellular Biology. 32 (2): 333–347. doi:10.1128/MCB.05917-11. PMC   3255767 . PMID   22064485.
  26. Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M, Komnenovic V, et al. (April 2009). "SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells". Developmental Cell. 16 (4): 507–516. doi:10.1016/j.devcel.2009.03.006. PMC   3997300 . PMID   19386260.
  27. Savarese F, Dávila A, Nechanitzky R, De La Rosa-Velazquez I, Pereira CF, Engelke R, et al. (November 2009). "Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression". Genes & Development. 23 (22): 2625–2638. doi:10.1101/gad.1815709. PMC   2779756 . PMID   19933152.
  28. Wang Z, Yang X, Chu X, Zhang J, Zhou H, Shen Y, Long J (May 2012). "The structural basis for the oligomerization of the N-terminal domain of SATB1". Nucleic Acids Research. 40 (9): 4193–4202. doi:10.1093/nar/gkr1284. PMC   3351170 . PMID   22241778.
  29. Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T (August 2001). "SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis". Molecular and Cellular Biology. 21 (16): 5591–5604. doi:10.1128/MCB.21.16.5591-5604.2001. PMC   87280 . PMID   11463840.
  30. Gotzmann J, Meissner M, Gerner C (May 2000). "The fate of the nuclear matrix-associated-region-binding protein SATB1 during apoptosis". Cell Death and Differentiation. 7 (5): 425–438. doi: 10.1038/sj.cdd.4400668 . PMID   10800076. S2CID   21633620.
  31. Sun Y, Wang T, Su Y, Yin Y, Xu S, Ma C, Han X (March 2006). "The behavior of SATB1, a MAR-binding protein, in response to apoptosis stimulation". Cell Biology International. 30 (3): 244–247. doi:10.1016/j.cellbi.2005.10.025. PMID   16377216. S2CID   26706596.
  32. den Hoed J, de Boer E, Voisin N, Dingemans AJ, Guex N, Wiel L, et al. (February 2021). "Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction". American Journal of Human Genetics. 108 (2): 346–356. doi:10.1016/j.ajhg.2021.01.007. hdl: 21.11116/0000-0007-623A-A . PMC   7895900 . PMID   33513338.
  33. "Den Hoed-De Boer-Voisin Syndrome; DHDBV". Online Mendelian Inheritance in Man (OMIM). Johns Hopkins University. Entry - #619229. Retrieved 2023-07-08.
  34. "Developmental Delay With Dysmorphic Facies and Dental Anomalies; DEFDA". Online Mendelian Inheritance in Man (OMIM). Johns Hopkins University. Entry - #619228. Retrieved 2023-07-08.
  35. Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T (March 2008). "SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis". Nature. 452 (7184): 187–193. Bibcode:2008Natur.452..187H. doi:10.1038/nature06781. PMID   18337816. S2CID   4429446.
  36. Chu SH, Ma YB, Feng DF, Zhang H, Zhu ZA, Li ZQ, Jiang PC (July 2012). "Upregulation of SATB1 is associated with the development and progression of glioma". Journal of Translational Medicine. 10: 149. doi:10.1186/1479-5876-10-149. PMC   3492129 . PMID   22839214.
  37. Mao L, Yang C, Wang J, Li W, Wen R, Chen J, Zheng J (May 2013). "SATB1 is overexpressed in metastatic prostate cancer and promotes prostate cancer cell growth and invasion". Journal of Translational Medicine. 11: 111. doi:10.1186/1479-5876-11-111. PMC   3651708 . PMID   23642278.
  38. Tu W, Luo M, Wang Z, Yan W, Xia Y, Deng H, et al. (August 2012). "Upregulation of SATB1 promotes tumor growth and metastasis in liver cancer". Liver International. 32 (7): 1064–1078. doi:10.1111/j.1478-3231.2012.02815.x. PMID   22583549. S2CID   23581044.
  39. Nodin B, Hedner C, Uhlén M, Jirström K (September 2012). "Expression of the global regulator SATB1 is an independent factor of poor prognosis in high grade epithelial ovarian cancer". Journal of Ovarian Research. 5 (1): 24. doi:10.1186/1757-2215-5-24. PMC   3472180 . PMID   22992394.
  40. Zhang H, Qu S, Li S, Wang Y, Li Y, Wang Y, et al. (June 2013). "Silencing SATB1 inhibits proliferation of human osteosarcoma U2OS cells". Molecular and Cellular Biochemistry. 378 (1–2): 39–45. doi:10.1007/s11010-013-1591-0. PMID   23516037. S2CID   254798923.
  41. Huang B, Zhou H, Wang S, Lang XP, Wang X (November 2016). "Effect of silencing SATB1 on proliferation, invasion and apoptosis of A549 human lung adenocarcinoma cells". Oncology Letters. 12 (5): 3818–3824. doi:10.3892/ol.2016.5179. PMC   5104178 . PMID   27895736.
  42. 1 2 Stephen TL, Payne KK, Chaurio RA, Allegrezza MJ, Zhu H, Perez-Sanz J, et al. (January 2017). "SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells". Immunity. 46 (1): 51–64. doi:10.1016/j.immuni.2016.12.015. PMC   5336605 . PMID   28099864.
  43. Chaurio RA, Anadon CM, Lee Costich T, Payne KK, Biswas S, Harro CM, et al. (January 2022). "TGF-β-mediated silencing of genomic organizer SATB1 promotes Tfh cell differentiation and formation of intra-tumoral tertiary lymphoid structures". Immunity. 55 (1): 115–128.e9. doi:10.1016/j.immuni.2021.12.007. PMC   8852221 . PMID   35021053.
  44. 1 2 3 4 5 Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T (October 2002). "SATB1 targets chromatin remodelling to regulate genes over long distances". Nature. 419 (6907): 641–645. Bibcode:2002Natur.419..641Y. doi:10.1038/nature01084. PMID   12374985. S2CID   25822700.
  45. Liu J, Barnett A, Neufeld EJ, Dudley JP (July 1999). "Homeoproteins CDP and SATB1 interact: potential for tissue-specific regulation". Molecular and Cellular Biology. 19 (7): 4918–4926. doi:10.1128/mcb.19.7.4918. PMC   84297 . PMID   10373541.
  46. Durrin LK, Krontiris TG (June 2002). "The thymocyte-specific MAR binding protein, SATB1, interacts in vitro with a novel variant of DNA-directed RNA polymerase II, subunit 11". Genomics. 79 (6): 809–817. doi:10.1006/geno.2002.6772. PMID   12036295.

Further reading