PRMT1

Last updated
PRMT1
Protein PRMT1 PDB 1or8.png
Identifiers
Aliases PRMT1 , ANM1, HCP1, HRMT1L2, IR1B4, protein arginine methyltransferase 1
External IDs OMIM: 602950 MGI: 107846 HomoloGene: 21477 GeneCards: PRMT1
EC number 2.1.1.321
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001207042
NM_001536
NM_198318
NM_198319

NM_001252476
NM_001252477
NM_019830

RefSeq (protein)

NP_001193971
NP_001527
NP_938074

NP_001239405
NP_001239406
NP_062804

Location (UCSC) Chr 19: 49.68 – 49.69 Mb Chr 7: 44.63 – 44.64 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Protein arginine N-methyltransferase 1 is an enzyme that in humans is encoded by the PRMT1 gene. [5] The HRMT1L2 gene encodes a protein arginine methyltransferase that functions as a histone methyltransferase specific for histone H4. [6]

Contents

Function

PRMT1 gene encodes for the protein arginine methyltransferase that functions as a histone methyltransferase specific for histone H4 in eukaryotic cells. [6] Specifically altering histone H4 in eukaryotes gives it the ability to remodel chromatin acting as a post-translational modifier. [7]

Through regulation of gene expression, arginine methyltransferases control the cell cycle and death of eukaryotic cells. [7]

Reaction pathway

While all PRMT enzymes catalyze the methylation of arginine residues in proteins, PRMT1 is unique in that is catalyzes the formation of asymmetric dimethylarginine as opposed to the PRMT2 that catalyzes the formation of symmetrically dimethylated arginine. [8] Individual PRMT utilize S-adenosyl-L-methionine (SAM) as the methyl donor and catalyze methyl group transfer to the ω-nitrogen of an arginine residue. [8]

Clinical significance

In humans, these enzymes regulate gene expression and hence are involved in pathogenesis of many human diseases. [9] Using enzyme inhibitors for arginine methyltransferase 1, studies were able to demonstrate the enzyme's potential as an early catalyst of various cancers. [9] [8] [10]

Interactions

PRMT1 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Histone</span> Protein family around which DNA winds to form nucleosomes

In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each human cell has about 1.8 meters of DNA if completely stretched out; however, when wound about histones, this length is reduced to about 90 micrometers (0.09 mm) of 30 nm diameter chromatin fibers.

<span class="mw-page-title-main">Histone methyltransferase</span> Histone-modifying enzymes

Histone methyltransferases (HMT) are histone-modifying enzymes, that catalyze the transfer of one, two, or three methyl groups to lysine and arginine residues of histone proteins. The attachment of methyl groups occurs predominantly at specific lysine or arginine residues on histones H3 and H4. Two major types of histone methyltranferases exist, lysine-specific and arginine-specific. In both types of histone methyltransferases, S-Adenosyl methionine (SAM) serves as a cofactor and methyl donor group.
The genomic DNA of eukaryotes associates with histones to form chromatin. The level of chromatin compaction depends heavily on histone methylation and other post-translational modifications of histones. Histone methylation is a principal epigenetic modification of chromatin that determines gene expression, genomic stability, stem cell maturation, cell lineage development, genetic imprinting, DNA methylation, and cell mitosis.

<span class="mw-page-title-main">Histone H4</span> One of the five main histone proteins involved in the structure of chromatin

Histone H4 is one of the five main histone proteins involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and a long N-terminal tail, H4 is involved with the structure of the nucleosome of the 'beads on a string' organization. Histone proteins are highly post-translationally modified. Covalently bonded modifications include acetylation and methylation of the N-terminal tails. These modifications may alter expression of genes located on DNA associated with its parent histone octamer. Histone H4 is an important protein in the structure and function of chromatin, where its sequence variants and variable modification states are thought to play a role in the dynamic and long term regulation of genes.

Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids in the histones are methylated, and how many methyl groups are attached. Methylation events that weaken chemical attractions between histone tails and DNA increase transcription because they enable the DNA to uncoil from nucleosomes so that transcription factor proteins and RNA polymerase can access the DNA. This process is critical for the regulation of gene expression that allows different cells to express different genes.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

<span class="mw-page-title-main">RBBP4</span> Protein-coding gene in the species Homo sapiens

Histone-binding protein RBBP4 is a protein that in humans is encoded by the RBBP4 gene.

<span class="mw-page-title-main">SUV39H1</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase SUV39H1 is an enzyme that in humans is encoded by the SUV39H1 gene.

<span class="mw-page-title-main">RBBP7</span> Protein-coding gene in the species Homo sapiens

Histone-binding protein RBBP7 is a protein that in humans is encoded by the RBBP7 gene.

<span class="mw-page-title-main">Protein arginine methyltransferase 5</span> Protein-coding gene in the species Homo sapiens

Protein arginine N-methyltransferase 5 is an enzyme that in humans is encoded by the PRMT5 gene. PRMT5 symmetrically dimethylates H2AR3, H4R3, H3R2, and H3R8 in vivo, all of which are linked to a range of transcriptional regulatory events.

<span class="mw-page-title-main">PABPN1</span> Protein-coding gene in the species Homo sapiens

Polyadenylate-binding protein 2 (PABP-2) also known as polyadenylate-binding nuclear protein 1 (PABPN1) is a protein that in humans is encoded by the PABPN1 gene. PABN1 is a member of a larger family of poly(A)-binding proteins in the human genome.

<span class="mw-page-title-main">EIF3A</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 3 subunit A (eIF3a) is a protein that in humans is encoded by the EIF3A gene. It is one of the subunits of Eukaryotic initiation factor 3 (eIF3) a multiprotein complex playing major roles in translation initiation in eukaryotes.

<span class="mw-page-title-main">DMAP1</span> Protein-coding gene in the species Homo sapiens

DNA methyltransferase 1-associated protein 1 is an enzyme that in humans is encoded by the DMAP1 gene.

<span class="mw-page-title-main">HIST2H3PS2</span> Pseudogene in the species Homo sapiens

Histone cluster 2, H3, pseudogene 2, also known as HIST2H3PS2, is a human gene.

<span class="mw-page-title-main">STK38</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase 38 is an enzyme that in humans is encoded by the STK38 gene.

<span class="mw-page-title-main">PRMT2</span> Protein-coding gene in the species Homo sapiens

Protein arginine N-methyltransferase 2 is an enzyme that in humans is encoded by the PRMT2 gene.

<span class="mw-page-title-main">KMT5A</span> Protein-coding gene in humans

N-lysine methyltransferase KMT5A is an enzyme that in humans is encoded by the KMT5A gene. The enzyme is a histone methyltransferase, SET domain-containing and lysine-specific. The enzyme transfers one methyl group to histone H4 lysine residue at position 20. S-Adenosyl methionine (SAM) is both the cofactor and the methyl group donor. The lysine residue is converted to N6-methyllysine residue.

<span class="mw-page-title-main">PRMT6</span> Protein-coding gene in the species Homo sapiens

Protein arginine N-methyltransferase 6 is an enzyme that in humans is encoded by the PRMT6 gene.

<span class="mw-page-title-main">IFNAR1</span> Protein-coding gene in the species Homo sapiens

Interferon-alpha/beta receptor alpha chain is a protein that in humans is encoded by the IFNAR1 gene.

<span class="mw-page-title-main">PRMT3</span> Protein-coding gene in the species Homo sapiens

Protein arginine N-methyltransferase 3 is an enzyme that in humans is encoded by the PRMT3 gene.

Protein methylation is a type of post-translational modification featuring the addition of methyl groups to proteins. It can occur on the nitrogen-containing side-chains of arginine and lysine, but also at the amino- and carboxy-termini of a number of different proteins. In biology, methyltransferases catalyze the methylation process, activated primarily by S-adenosylmethionine. Protein methylation has been most studied in histones, where the transfer of methyl groups from S-adenosyl methionine is catalyzed by histone methyltransferases. Histones that are methylated on certain residues can act epigenetically to repress or activate gene expression.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000126457 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000109324 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Scott HS, Antonarakis SE, Lalioti MD, Rossier C, Silver PA, Henry MF (June 1998). "Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2)". Genomics. 48 (3): 330–40. doi:10.1006/geno.1997.5190. PMID   9545638.
  6. 1 2 "Entrez Gene: PRMT1 protein arginine methyltransferase 1".
  7. 1 2 Qian K, Zhen G (2016-01-01). "Chapter 8 - Current Development of Protein Arginine Methyltransferase Inhibitors". In Medina-Franco JL (ed.). Epi-Informatics. Boston: Academic Press. pp. 231–256. doi:10.1016/b978-0-12-802808-7.00008-3. ISBN   978-0-12-802808-7.
  8. 1 2 3 Obianyo O, Osborne TC, Thompson PR (September 2008). "Kinetic mechanism of protein arginine methyltransferase 1". Biochemistry. 47 (39): 10420–7. doi:10.1021/bi800904m. PMC   2933744 . PMID   18771293.
  9. 1 2 Zeng H, Xu W (2015-01-01). "Chapter 16 - Enzymatic Assays of Histone Methyltransferase Enzymes". In Zheng YG (ed.). Epigenetic Technological Applications. Boston: Academic Press. pp. 333–361. doi:10.1016/b978-0-12-801080-8.00016-8. ISBN   978-0-12-801080-8.
  10. Carbone F, Montecucco F, Xu S, Banach M, Jamialahmadi T, Sahebkar A (August 2020). "Epigenetics in atherosclerosis: key features and therapeutic implications". Expert Opinion on Therapeutic Targets. 24 (8): 719–721. doi: 10.1080/14728222.2020.1764535 . PMID   32354276.
  11. 1 2 Lin WJ, Gary JD, Yang MC, Clarke S, Herschman HR (June 1996). "The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase". J. Biol. Chem. 271 (25): 15034–44. doi: 10.1074/jbc.271.25.15034 . PMID   8663146.
  12. 1 2 Berthet C, Guéhenneux F, Revol V, Samarut C, Lukaszewicz A, Dehay C, Dumontet C, Magaud JP, Rouault JP (January 2002). "Interaction of PRMT1 with BTG/TOB proteins in cell signalling: molecular analysis and functional aspects". Genes Cells. 7 (1): 29–39. doi: 10.1046/j.1356-9597.2001.00497.x . PMID   11856371. S2CID   15016952.
  13. Smith WA, Schurter BT, Wong-Staal F, David M (May 2004). "Arginine methylation of RNA helicase a determines its subcellular localization". J. Biol. Chem. 279 (22): 22795–8. doi: 10.1074/jbc.C300512200 . PMID   15084609.
  14. 1 2 Lee J, Bedford MT (March 2002). "PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays". EMBO Rep. 3 (3): 268–73. doi:10.1093/embo-reports/kvf052. PMC   1084016 . PMID   11850402.
  15. 1 2 3 Wada K, Inoue K, Hagiwara M (August 2002). "Identification of methylated proteins by protein arginine N-methyltransferase 1, PRMT1, with a new expression cloning strategy". Biochim. Biophys. Acta. 1591 (1–3): 1–10. doi: 10.1016/s0167-4889(02)00202-1 . PMID   12183049.
  16. 1 2 Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (September 2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. hdl: 11858/00-001M-0000-0010-8592-0 . PMID   16169070. S2CID   8235923.
  17. 1 2 Côté J, Boisvert FM, Boulanger MC, Bedford MT, Richard S (January 2003). "Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1". Mol. Biol. Cell. 14 (1): 274–87. doi:10.1091/mbc.E02-08-0484. PMC   140244 . PMID   12529443.
  18. Abramovich C, Yakobson B, Chebath J, Revel M (January 1997). "A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor". EMBO J. 16 (2): 260–6. doi:10.1093/emboj/16.2.260. PMC   1169633 . PMID   9029147.
  19. Tang J, Kao PN, Herschman HR (June 2000). "Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3". J. Biol. Chem. 275 (26): 19866–76. doi: 10.1074/jbc.M000023200 . PMID   10749851.
  20. Kwak YT, Guo J, Prajapati S, Park KJ, Surabhi RM, Miller B, Gehrig P, Gaynor RB (April 2003). "Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties". Mol. Cell. 11 (4): 1055–66. doi: 10.1016/s1097-2765(03)00101-1 . PMID   12718890.

Further reading