HNRNPR

Last updated
HNRNPR
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases HNRNPR , HNRPR, hnRNP-R, heterogeneous nuclear ribonucleoprotein R
External IDs OMIM: 607201 MGI: 1891692 HomoloGene: 4251 GeneCards: HNRNPR
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001277121
NM_001277122
NM_001277123
NM_028871
NM_001355182

Contents

RefSeq (protein)

n/a

Location (UCSC) Chr 1: 23.3 – 23.34 Mb Chr 4: 136.04 – 136.09 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Heterogeneous nuclear ribonucleoprotein R is a protein that in humans is encoded by the HNRNPR gene. [5] [6]

Function

This gene belongs to the subfamily of ubiquitously expressed heterogeneous nuclear ribonucleoproteins (hnRNPs). The hnRNPs are RNA-binding proteins and they complex with heterogeneous nuclear RNA (hnRNA). These proteins are associated with pre-mRNAs in the nucleus and appear to influence pre-mRNA processing and other aspects of mRNA metabolism and transport. While all of the hnRNPs are present in the nucleus, some seem to shuttle between the nucleus and the cytoplasm. The hnRNP proteins have distinct nucleic acid binding properties. The protein encoded by this gene has three repeats of RRM domains that bind to RNAs and also contains a nuclear localization motif. [6]

HNRNPR, together with its main RNA interacting partner, 7SK, is essential for axon growth in motoneurons. [7] Depletion of HNRNPR from primary motoneurons inhibits axonal development, but it does not lead to enhanced loss of motor neurons. [7] It also plays an important role in axonal β-actin mRNA translocation, binding directly to the 3'-UTR of β-actin mRNA. [8]

HNRNPR enhances c-fos transcription in vitro by forming a complex with PC4 and Mediator cofactors. [9]

Interactions

HNRNPR has been shown to interact with SMN1, [10] [11] PRMT1, [12] [13] TDP-43, [14] and FUS/TLS. [14]

Related Research Articles

snRNPs, or small nuclear ribonucleoproteins, are RNA-protein complexes that combine with unmodified pre-mRNA and various other proteins to form a spliceosome, a large RNA-protein molecular complex upon which splicing of pre-mRNA occurs. The action of snRNPs is essential to the removal of introns from pre-mRNA, a critical aspect of post-transcriptional modification of RNA, occurring only in the nucleus of eukaryotic cells. Additionally, U7 snRNP is not involved in splicing at all, as U7 snRNP is responsible for processing the 3′ stem-loop of histone pre-mRNA.

Gideon Dreyfuss is an American biochemist who is the Isaac Norris Professor of Biochemistry and Biophysics at the University of Pennsylvania School of Medicine and an investigator of the Howard Hughes Medical Institute. He was elected to the National Academy of Sciences in 2012.

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are complexes of RNA and protein present in the cell nucleus during gene transcription and subsequent post-transcriptional modification of the newly synthesized RNA (pre-mRNA). The presence of the proteins bound to a pre-mRNA molecule serves as a signal that the pre-mRNA is not yet fully processed and therefore not ready for export to the cytoplasm. Since most mature RNA is exported from the nucleus relatively quickly, most RNA-binding protein in the nucleus exist as heterogeneous ribonucleoprotein particles. After splicing has occurred, the proteins remain bound to spliced introns and target them for degradation.

<span class="mw-page-title-main">Survival of motor neuron</span> Protein in animal cells

Survival of motor neuron or survival motor neuron (SMN) is a protein that in humans is encoded by the SMN1 and SMN2 genes.

<span class="mw-page-title-main">HNRNPA1</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein A1 is a protein that in humans is encoded by the HNRNPA1 gene. Mutations in hnRNP A1 are causative of amyotrophic lateral sclerosis and the syndrome multisystem proteinopathy.

<span class="mw-page-title-main">HNRNPK</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein K is a protein that in humans is encoded by the HNRNPK gene. It is found in the cell nucleus that binds to pre-messenger RNA (mRNA) as a component of heterogeneous ribonucleoprotein particles. The simian homolog is known as protein H16. Both proteins bind to single-stranded DNA as well as to RNA and can stimulate the activity of RNA polymerase II, the protein responsible for most gene transcription. The relative affinities of the proteins for DNA and RNA vary with solution conditions and are inversely correlated, so that conditions promoting strong DNA binding result in weak RNA binding.

<span class="mw-page-title-main">HNRNPA2B1</span>

Heterogeneous nuclear ribonucleoproteins A2/B1 is a protein that in humans is encoded by the HNRNPA2B1 gene.

<span class="mw-page-title-main">HNRPU</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein U is a protein that in humans is encoded by the HNRNPU gene.

<span class="mw-page-title-main">HNRPD</span>

Heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) also known as AU-rich element RNA-binding protein 1 (AUF1) is a protein that in humans is encoded by the HNRNPD gene. Alternative splicing of this gene results in four transcript variants.

<span class="mw-page-title-main">HNRNPC</span>

Heterogeneous nuclear ribonucleoproteins C1/C2 is a protein that in humans is encoded by the HNRNPC gene.

<span class="mw-page-title-main">SYNCRIP</span>

Synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP), also known as heterogeneous nuclear ribonucleoprotein (hnRNP) Q or NS1-associated protein-1 (NSAP-1), is a protein that in humans is encoded by the SYNCRIP gene. As the name implies, SYNCRIP is localized predominantly in the cytoplasm. It is evolutionarily conserved across eukaryotes and participates in several cellular and disease pathways, especially in neuronal and muscular development. In humans, there are three isoforms, all of which are associated in vitro with pre-mRNAs, mRNA splicing intermediates, and mature mRNA-protein complexes, including mRNA turnover.

<span class="mw-page-title-main">HNRPF</span>

Heterogeneous nuclear ribonucleoprotein F is a protein that in humans is encoded by the HNRNPF gene.

<span class="mw-page-title-main">RBMX</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein G is a protein that in humans is encoded by the RBMX gene.

<span class="mw-page-title-main">HNRPH1</span>

Heterogeneous nuclear ribonucleoprotein H is a protein that in humans is encoded by the HNRNPH1 gene.

<span class="mw-page-title-main">HNRNPL</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein L is a protein that in humans is encoded by the HNRNPL gene.

<span class="mw-page-title-main">HNRNPAB</span> Protein-coding gene in humans

Heterogeneous nuclear ribonucleoprotein A/B, also known as HNRNPAB, is a protein which in humans is encoded by the HNRNPAB gene. Although this gene is named HNRNPAB in reference to its first cloning as an RNA binding protein with similarity to HNRNP A and HNRNP B, it is not a member of the HNRNP A/B subfamily of HNRNPs, but groups together closely with HNRNPD/AUF1 and HNRNPDL.

<span class="mw-page-title-main">HNRPH3</span> Protein-coding gene in humans

Heterogeneous nuclear ribonucleoprotein H3 is a protein that in humans is encoded by the HNRNPH3 gene.

<span class="mw-page-title-main">HNRPH2</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein H2 is a protein that in humans is encoded by the HNRNPH2 gene.

<span class="mw-page-title-main">HNRPDL</span> Mammalian protein found in Homo sapiens

Heterogeneous nuclear ribonucleoprotein D-like, also known as HNRPDL, is a protein which in humans is encoded by the HNRPDL gene.

<span class="mw-page-title-main">PTBP1</span> Protein-coding gene in the species Homo sapiens

Polypyrimidine tract-binding protein 1 is a protein that in humans is encoded by the PTBP1 gene.

References

  1. 1 2 3 ENSG00000125944 GRCh38: Ensembl release 89: ENSG00000282958, ENSG00000125944 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000066037 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hassfeld W, Chan EK, Mathison DA, Portman D, Dreyfuss G, Steiner G, Tan EM (January 1998). "Molecular definition of heterogeneous nuclear ribonucleoprotein R (hnRNP R) using autoimmune antibody: immunological relationship with hnRNP P". Nucleic Acids Research. 26 (2): 439–45. doi:10.1093/nar/26.2.439. PMC   147279 . PMID   9421497.
  6. 1 2 "Entrez Gene: HNRPR heterogeneous nuclear ribonucleoprotein R".
  7. 1 2 Briese M, Saal-Bauernschubert L, Ji C, Moradi M, Ghanawi H, Uhl M, Appenzeller S, Backofen R, Sendtner M (March 2018). "hnRNP R and its main interactor, the noncoding RNA 7SK, coregulate the axonal transcriptome of motoneurons". Proceedings of the National Academy of Sciences of the United States of America. 115 (12): E2859-68. Bibcode:2018PNAS..115E2859B. doi: 10.1073/pnas.1721670115 . ISSN   1091-6490. PMC   5866599 . PMID   29507242.
  8. Glinka M, Herrmann T, Funk N, Havlicek S, Rossoll W, Winkler C, Sendtner M (2010). "The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in spinal motor neurons". Human Molecular Genetics. 19 (10): 1951–66. doi: 10.1093/hmg/ddq073 . ISSN   1460-2083. PMID   20167579.
  9. Fukuda A, Nakadai T, Shimada M, Hisatake K (2009). "Heterogeneous nuclear ribonucleoprotein R enhances transcription from the naturally configured c-fos promoter in vitro". Journal of Biological Chemistry. 284 (35): 23472–80. doi: 10.1074/jbc.M109.013656 . PMC   2749121 . PMID   19581295.
  10. Mourelatos Z, Abel L, Yong J, Kataoka N, Dreyfuss G (October 2001). "SMN interacts with a novel family of hnRNP and spliceosomal proteins". The EMBO Journal. 20 (19): 5443–52. doi:10.1093/emboj/20.19.5443. PMC   125643 . PMID   11574476.
  11. Rossoll W, Kröning AK, Ohndorf UM, Steegborn C, Jablonka S, Sendtner M (January 2002). "Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons?". Human Molecular Genetics. 11 (1): 93–105. doi: 10.1093/hmg/11.1.93 . PMID   11773003.
  12. Wada K, Inoue K, Hagiwara M (August 2002). "Identification of methylated proteins by protein arginine N-methyltransferase 1, PRMT1, with a new expression cloning strategy". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1591 (1–3): 1–10. doi: 10.1016/S0167-4889(02)00202-1 . PMID   12183049.
  13. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (September 2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. hdl: 11858/00-001M-0000-0010-8592-0 . PMID   16169070. S2CID   8235923.
  14. 1 2 Ling SC, Albuquerque CP, Han JS, Lagier-Tourenne C, Tokunaga S, Zhou H, Cleveland DW (July 2010). "ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS". Proceedings of the National Academy of Sciences of the United States of America. 107 (30): 13318–23. Bibcode:2010PNAS..10713318L. doi: 10.1073/pnas.1008227107 . PMC   2922163 . PMID   20624952.

Further reading