SnRNP70

Last updated
SNRNP70
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SNRNP70 , RNPU1Z, RPU1, SNRP70, Snp1, U1-70K, U170K, U1AP, U1RNP, SnRNP70, small nuclear ribonucleoprotein U1 subunit 70
External IDs OMIM: 180740 MGI: 98341 HomoloGene: 20672 GeneCards: SNRNP70
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001009820
NM_001301069
NM_003089

NM_009224

RefSeq (protein)

NP_001287998
NP_003080

NP_033250

Location (UCSC) Chr 19: 49.09 – 49.11 Mb Chr 7: 45.03 – 45.05 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

snRNP70 also known as U1 small nuclear ribonucleoprotein 70 kDa is a protein [5] that in humans is encoded by the SNRNP70 gene. [6] [7] snRNP70 is a small nuclear ribonucleoprotein that associates with U1 spliceosomal RNA, forming the U1snRNP a core component of the spliceosome. The U1-70K protein and other components of the spliceosome complex form detergent-insoluble aggregates in both sporadic and familial human cases of Alzheimer's disease. [8] [9] U1-70K co-localizes with Tau in neurofibrillary tangles in Alzheimer's disease.

Contents

Interactions

snRNP70 has been shown to interact with ASF/SF2, [10] [11] SRPK1, [12] [13] and ZRANB2. [14]

Role in autoimmunity

Antibodies towards snRNP70 are associated with mixed connective tissue disease. [15]

Related Research Articles

<span class="mw-page-title-main">RNA splicing</span> Process in molecular biology

RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcript is transformed into a mature messenger RNA (mRNA). It works by removing all the introns and splicing back together exons. For nuclear-encoded genes, splicing occurs in the nucleus either during or immediately after transcription. For those eukaryotic genes that contain introns, splicing is usually needed to create an mRNA molecule that can be translated into protein. For many eukaryotic introns, splicing occurs in a series of reactions which are catalyzed by the spliceosome, a complex of small nuclear ribonucleoproteins (snRNPs). There exist self-splicing introns, that is, ribozymes that can catalyze their own excision from their parent RNA molecule. The process of transcription, splicing and translation is called gene expression, the central dogma of molecular biology.

<span class="mw-page-title-main">Spliceosome</span> Molecular machine that removes intron RNA from the primary transcript

A spliceosome is a large ribonucleoprotein (RNP) complex found primarily within the nucleus of eukaryotic cells. The spliceosome is assembled from small nuclear RNAs (snRNA) and numerous proteins. Small nuclear RNA (snRNA) molecules bind to specific proteins to form a small nuclear ribonucleoprotein complex, which in turn combines with other snRNPs to form a large ribonucleoprotein complex called a spliceosome. The spliceosome removes introns from a transcribed pre-mRNA, a type of primary transcript. This process is generally referred to as splicing. An analogy is a film editor, who selectively cuts out irrelevant or incorrect material from the initial film and sends the cleaned-up version to the director for the final cut.

<span class="mw-page-title-main">SR protein</span>

SR proteins are a conserved family of proteins involved in RNA splicing. SR proteins are named because they contain a protein domain with long repeats of serine and arginine amino acid residues, whose standard abbreviations are "S" and "R" respectively. SR proteins are ~200-600 amino acids in length and composed of two domains, the RNA recognition motif (RRM) region and the RS domain. SR proteins are more commonly found in the nucleus than the cytoplasm, but several SR proteins are known to shuttle between the nucleus and the cytoplasm.

snRNPs, or small nuclear ribonucleoproteins, are RNA-protein complexes that combine with unmodified pre-mRNA and various other proteins to form a spliceosome, a large RNA-protein molecular complex upon which splicing of pre-mRNA occurs. The action of snRNPs is essential to the removal of introns from pre-mRNA, a critical aspect of post-transcriptional modification of RNA, occurring only in the nucleus of eukaryotic cells. Additionally, U7 snRNP is not involved in splicing at all, as U7 snRNP is responsible for processing the 3′ stem-loop of histone pre-mRNA.

Small nuclear RNA (snRNA) is a class of small RNA molecules that are found within the splicing speckles and Cajal bodies of the cell nucleus in eukaryotic cells. The length of an average snRNA is approximately 150 nucleotides. They are transcribed by either RNA polymerase II or RNA polymerase III. Their primary function is in the processing of pre-messenger RNA (hnRNA) in the nucleus. They have also been shown to aid in the regulation of transcription factors or RNA polymerase II, and maintaining the telomeres.

<span class="mw-page-title-main">Minor spliceosome</span>

The minor spliceosome is a ribonucleoprotein complex that catalyses the removal (splicing) of an atypical class of spliceosomal introns (U12-type) from messenger RNAs in some clades of eukaryotes. This process is called noncanonical splicing, as opposed to U2-dependent canonical splicing. U12-type introns represent less than 1% of all introns in human cells. However they are found in genes performing essential cellular functions.

<span class="mw-page-title-main">U11 spliceosomal RNA</span> Non-coding RNA involved in alternative splicing

The U11 snRNA is an important non-coding RNA in the minor spliceosome protein complex, which activates the alternative splicing mechanism. The minor spliceosome is associated with similar protein components as the major spliceosome. It uses U11 snRNA to recognize the 5' splice site while U12 snRNA binds to the branchpoint to recognize the 3' splice site.

<span class="mw-page-title-main">U1 spliceosomal RNA</span>

U1 spliceosomal RNA is the small nuclear RNA (snRNA) component of U1 snRNP, an RNA-protein complex that combines with other snRNPs, unmodified pre-mRNA, and various other proteins to assemble a spliceosome, a large RNA-protein molecular complex upon which splicing of pre-mRNA occurs. Splicing, or the removal of introns, is a major aspect of post-transcriptional modification, and takes place only in the nucleus of eukaryotes.

<span class="mw-page-title-main">U2 spliceosomal RNA</span>

U2 spliceosomal snRNAs are a species of small nuclear RNA (snRNA) molecules found in the major spliceosomal (Sm) machinery of virtually all eukaryotic organisms. In vivo, U2 snRNA along with its associated polypeptides assemble to produce the U2 small nuclear ribonucleoprotein (snRNP), an essential component of the major spliceosomal complex. The major spliceosomal-splicing pathway is occasionally referred to as U2 dependent, based on a class of Sm intron—found in mRNA primary transcripts—that are recognized exclusively by the U2 snRNP during early stages of spliceosomal assembly. In addition to U2 dependent intron recognition, U2 snRNA has been theorized to serve a catalytic role in the chemistry of pre-RNA splicing as well. Similar to ribosomal RNAs (rRNAs), Sm snRNAs must mediate both RNA:RNA and RNA:protein contacts and hence have evolved specialized, highly conserved, primary and secondary structural elements to facilitate these types of interactions.

<span class="mw-page-title-main">U4 spliceosomal RNA</span> Non-coding RNA component of the spliceosome

The U4 small nuclear Ribo-Nucleic Acid is a non-coding RNA component of the major or U2-dependent spliceosome – a eukaryotic molecular machine involved in the splicing of pre-messenger RNA (pre-mRNA). It forms a duplex with U6, and with each splicing round, it is displaced from the U6 snRNA in an ATP-dependent manner, allowing U6 to re-fold and create the active site for splicing catalysis. A recycling process involving protein Brr2 releases U4 from U6, while protein Prp24 re-anneals U4 and U6. The crystal structure of a 5′ stem-loop of U4 in complex with a binding protein has been solved.

<span class="mw-page-title-main">U5 spliceosomal RNA</span>

U5 snRNA is a small nuclear RNA (snRNA) that participates in RNA splicing as a component of the spliceosome. It forms the U5 snRNP by associating with several proteins including Prp8 - the largest and most conserved protein in the spliceosome, Brr2 - a helicase required for spliceosome activation, Snu114, and the 7 Sm proteins. U5 snRNA forms a coaxially-stacked series of helices that project into the active site of the spliceosome. Loop 1, which caps this series of helices, forms 4-5 base pairs with the 5'-exon during the two chemical reactions of splicing. This interaction appears to be especially important during step two of splicing, exon ligation.

<span class="mw-page-title-main">U6 spliceosomal RNA</span> Small nuclear RNA component of the spliceosome

U6 snRNA is the non-coding small nuclear RNA (snRNA) component of U6 snRNP, an RNA-protein complex that combines with other snRNPs, unmodified pre-mRNA, and various other proteins to assemble a spliceosome, a large RNA-protein molecular complex that catalyzes the excision of introns from pre-mRNA. Splicing, or the removal of introns, is a major aspect of post-transcriptional modification and takes place only in the nucleus of eukaryotes.

<span class="mw-page-title-main">U2AF2</span> Protein-coding gene in the species Homo sapiens

Splicing factor U2AF 65 kDa subunit is a protein that in humans is encoded by the U2AF2 gene.

<span class="mw-page-title-main">U2 small nuclear RNA auxiliary factor 1</span> Protein-coding gene in the species Homo sapiens

Splicing factor U2AF 35 kDa subunit is a protein that in humans is encoded by the U2AF1 gene.

<span class="mw-page-title-main">Small nuclear ribonucleoprotein polypeptide A</span> Protein-coding gene in the species Homo sapiens

U1 small nuclear ribonucleoprotein A is a protein that in humans is encoded by the SNRPA gene.

<span class="mw-page-title-main">SF3A2</span> Protein-coding gene in the species Homo sapiens

Splicing factor 3A subunit 2 is a protein that in humans is encoded by the SF3A2 gene.

<span class="mw-page-title-main">SNRPB2</span> Protein-coding gene in the species Homo sapiens

U2 small nuclear ribonucleoprotein B is a protein that in humans is encoded by the SNRPB2 gene.

<span class="mw-page-title-main">Small nuclear ribonucleoprotein polypeptide C</span> Protein-coding gene in the species Homo sapiens

U1 small nuclear ribonucleoprotein C is a protein that in humans is encoded by the SNRPC gene.

<span class="mw-page-title-main">Serine/arginine-rich splicing factor 1</span> Protein-coding gene in the species Homo sapiens

Serine/arginine-rich splicing factor 1 (SRSF1) also known as alternative splicing factor 1 (ASF1), pre-mRNA-splicing factor SF2 (SF2) or ASF1/SF2 is a protein that in humans is encoded by the SRSF1 gene. ASF/SF2 is an essential sequence specific splicing factor involved in pre-mRNA splicing. SRSF1 is the gene that codes for ASF/SF2 and is found on chromosome 17. The resulting splicing factor is a protein of approximately 33 kDa. ASF/SF2 is necessary for all splicing reactions to occur, and influences splice site selection in a concentration-dependent manner, resulting in alternative splicing. In addition to being involved in the splicing process, ASF/SF2 also mediates post-splicing activities, such as mRNA nuclear export and translation.

<span class="mw-page-title-main">Kiyoshi Nagai</span> Japanese structural biologist (1949–2019)

Kiyoshi Nagai was a Japanese structural biologist at the MRC Laboratory of Molecular Biology Cambridge, UK. He was known for his work on the mechanism of RNA splicing and structures of the spliceosome.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000104852 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000063511 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Spritz RA, Strunk K, Surowy CS, Hoch SO, Barton DE, Francke U (December 1987). "The human U1-70K snRNP protein: cDNA cloning, chromosomal localization, expression, alternative splicing and RNA-binding". Nucleic Acids Research. 15 (24): 10373–91. doi:10.1093/nar/15.24.10373. PMC   339950 . PMID   2447561.
  6. "Entrez Gene: SNRP70 small nuclear ribonucleoprotein 70kDa polypeptide (RNP antigen)".
  7. Spritz RA, Strunk K, Surowy CS, Mohrenweiser HW (October 1990). "Human U1-70K ribonucleoprotein antigen gene: organization, nucleotide sequence, and mapping to locus 19q13.3". Genomics. 8 (2): 371–9. doi:10.1016/0888-7543(90)90295-6. PMID   2147422.
  8. Diner I, Hales CM, Bishof I, Rabenold L, Duong DM, Yi H, Laur O, Gearing M, Troncoso J, Thambisetty M, Lah JJ, Levey AI, Seyfried NT (December 2014). "Aggregation properties of the small nuclear ribonucleoprotein U1-70K in Alzheimer disease". The Journal of Biological Chemistry. 289 (51): 35296–313. doi: 10.1074/jbc.M114.562959 . PMC   4271217 . PMID   25355317.
  9. Hales CM, Seyfried NT, Dammer EB, Duong D, Yi H, Gearing M, Troncoso JC, Mufson EJ, Thambisetty M, Levey AI, Lah JJ (April 2014). "U1 small nuclear ribonucleoproteins (snRNPs) aggregate in Alzheimer's disease due to autosomal dominant genetic mutations and trisomy 21". Molecular Neurodegeneration. 9: 15. doi: 10.1186/1750-1326-9-15 . PMC   4022210 . PMID   24773620.
  10. Xiao SH, Manley JL (November 1998). "Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2". The EMBO Journal. 17 (21): 6359–67. doi:10.1093/emboj/17.21.6359. PMC   1170960 . PMID   9799243.
  11. Cao W, Garcia-Blanco MA (August 1998). "A serine/arginine-rich domain in the human U1 70k protein is necessary and sufficient for ASF/SF2 binding". The Journal of Biological Chemistry. 273 (32): 20629–35. doi: 10.1074/jbc.273.32.20629 . PMID   9685421.
  12. Wang HY, Lin W, Dyck JA, Yeakley JM, Songyang Z, Cantley LC, Fu XD (February 1998). "SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells". The Journal of Cell Biology. 140 (4): 737–50. doi:10.1083/jcb.140.4.737. PMC   2141757 . PMID   9472028.
  13. Kamachi M, Le TM, Kim SJ, Geiger ME, Anderson P, Utz PJ (November 2002). "Human autoimmune sera as molecular probes for the identification of an autoantigen kinase signaling pathway". The Journal of Experimental Medicine. 196 (9): 1213–25. doi:10.1084/jem.20021167. PMC   2194102 . PMID   12417631.
  14. Adams DJ, van der Weyden L, Mayeda A, Stamm S, Morris BJ, Rasko JE (July 2001). "ZNF265--a novel spliceosomal protein able to induce alternative splicing". The Journal of Cell Biology. 154 (1): 25–32. doi:10.1083/jcb.200010059. PMC   2196870 . PMID   11448987.
  15. Sato T, Fujii T, Yokoyama T, Fujita Y, Imura Y, Yukawa N, Kawabata D, Nojima T, Ohmura K, Usui T, Mimori T (December 2010). "Anti-U1 RNP antibodies in cerebrospinal fluid are associated with central neuropsychiatric manifestations in systemic lupus erythematosus and mixed connective tissue disease". Arthritis and Rheumatism. 62 (12): 3730–40. doi:10.1002/art.27700. hdl: 2433/142082 . PMID   20722023.

Further reading