Neonatal withdrawal

Last updated

Neonatal withdrawal
Specialty Pediatrics   OOjs UI icon edit-ltr-progressive.svg

Neonatal withdrawal or neonatal abstinence syndrome (NAS) or neonatal opioid withdrawal syndrome (NOWS) is a withdrawal syndrome of infants, caused by the cessation of the administration of licit or illicit drugs. Tolerance, dependence, and withdrawal may occur as a result of repeated administration of drugs or even after short-term high-dose use—for example, during mechanical ventilation in intensive care units. There are two types of NAS: prenatal and postnatal. Prenatal NAS is caused by discontinuation of drugs taken by the pregnant mother, while postnatal NAS is caused by discontinuation of drugs directly to the infant. [1] [2]

Contents

Signs and symptoms

Those diagnosed with NAS may exhibit signs and symptoms that vary depending on various factors. Factors such as the type of drugs used by the birthing parent, how long the drugs were used, the amount of drug used that made it to the child, and symptoms associated with premature birth. [3] [4] Symptoms can appear as soon as 24 to 48 hours and as late as 5 to 10 days after birth. If the neonate (a newborn less than 4 weeks of age) [5] is expected to have NAS, they may need to stay in the hospital to be monitored for a week. A baby born at full-term may commonly exhibit symptoms such as mottling (net-like bluish-red skin due to swollen blood vessels), [6] irritability, trembling, excessive or high-pitched crying, sleeping problems, increased muscle tone, overactive reflexes, seizures, yawning, stuffy nose, sneezing, poor feeding, rapid breathing, slow weight gain, vomiting, diarrhea, sweating, fever or unstable temperature. [3] [4] These symptoms mainly arise from the dysregulation of 4 physiological and or behavioral systems; state control and attention which influence irritability and avoidance of eye contact, motor and tone control which influence tremors and seizures, sensory processing which influence hypersensitivity or hyposensitivity, and autonomic control which influence patterns of respiration and fever. Each of which can influence the dysregulation of another system. For example, hypersensitivity in the sensory processing system can cause poor feeding due to the inability to relax, which therefore ultimately results in weight loss or poor weight gain. [7] Signs and symptoms are also grouped into three systems by the Finnegan Neonatal Abstinence Scoring System (FNASS). The central nervous system grouping which includes deficiencies in sleep after eating and myoclonic (uncontrolled movement) jerk. The metabolic, vasomotor, and respiratory grouping which include symptoms like a stuffy nose and tachypnea. And the gastrointestinal grouping which include excessive sucking and poor feeding. [8] Babies born prematurely (before 37 weeks) often exhibit less symptoms or in less severity than those born at full term (38 to 42 weeks). This is due to being exposed to the drug for a lesser period of time during pregnancy. Premature babies with NAS tend to recover at a much faster rate than a full term baby would. [4]

Both neonatal and maternal factors such as gestational age (length of pregnancy starting from the first day of the last mentrual period), maternal substance use, genetics, and gender play a role in the symptoms expressed by the neonate. [9] Every infant is unique in which symptoms are expressed. Males are prone to having more severe symptoms compared to females and those with hypermethylation at the OPRM1 and COMT gene sites experience more severe symptoms as well. Symptoms can also appear and disappear and fluctuate in severity over time within the same infant and withdrawal period. Untreated NAS symptoms can cause developmental issues such as altered cognitive, social, emotional, and behavioral capacities that appear later in life. [7] Long term effects vary by the substance that the neonate gets exposed to but they most commonly have been shown to affect growth, behavior, cognitive function, vision problems, motor problems, language, academic achievement, otitis media (infection or inflammation of the middel ear), and predisposition to self utilization of drugs. Substance examples of long term effects as follows: Alcohol exposure has shown it could lead to poor growth. Tobacco exposure can make it more likely to get obese. Alcohol, nicotine, and opiate exposure have shown to lead to attention deficits. Nicotine and alcohol exposure affect learning and memory. Cocaine exposure effects visual and motor skills, attention, and memory. Marijuana has been shown to have adverse effects on deep problem solving skills and visual memory. Nicotine exposure has shown poor reading abilities, alcohol showed a decreased use of language, and language delays for cocaine. Opioid exposure has shown visual impairments such as reduced ability to see fine detail and uncontrolled eye movements. Heroin exposure led to lower weight, height, and head circumference as well as decreased cognitive function that resulted in lower perceptual, quantitatve, and memory ares of cognition. [10] [11] Some common drugs that could result in NAS withdrawal or withdrawal-like symptoms in neonates are opioids; agonists such as morphine, codeine, methadone, meperidine, oxycodone, propoxyphene, hydromorphone, hydrocodone, fentanyl, tramadol, and heroin, antagonists such as naloxone, and naltrexone, and mixed agonist-antagonists like pentazocine and buprenorphine. CNS stimulants; Amphetamines such as dextroamphetamine, methamphetamine, amphetamine sulfate, amphetamine congeners, benzphetamine, diethylpropion, fenfluramine, phendimetrazine, phentermine, cocaine, methylphenidate, pemoline, phencyclidines, and nicotine. CNS depressants; alcohol, barbiturates, benzodiazepines, other sedative hypnotics, methaqualone, glutethimide, chloral, hydrate, cannabinoids, marijuana, and hashish. Hallucinogens; indolealkylamines, phenylethylamines, phenylisopropylamine, inhalants, solvents and aerosols, nitrites, and nitrous oxide. [12]

Cannabis

There are pre- and post-natal exposure risk of neurobehavioral disorders. The exposure during pregnancy can alter the newborn infants' short and long term adverse effects. This can include low birth weight, reduced head circumference, cognitive deficits, emotional dysregulation, high impulsiveness, and higher risk to develop a substance disorder. [13] It can range from childhood, adolescence and early adulthood. While mixture with other drugs, cannabis can prolong the effects of the additional. [14] [15]

Cocaine

Newborn infants with cocaine exposure during neonate manifests abnormal neurobehavioral. This is typically found between 48 hours and 72 hours of life. Cocaine is a vasoconstrictor [16] which is the main mechanism that causes harm to the fetus and placenta. As the drug is capable of crossing the blood-brain barrier and placenta, they will experience shortcomings. In a randomized case-controlled prospective study, there are a few characteristic traits the exposed group does more frequently. Compared to the control group, the cocaine-exposed infants share a few features which includes jittery, tremors, irritable, excessive suck, extreme alertness, abnormal breathing and autonomic instability. Based on how much of the drug the infant was exposed to, there is a positive dose-response relationship between exposure of cocaine and hyperactivity along with the adaptability to its environment. [17]

Alcohol

Alcohol is one of the most commonly used drugs. [18] With long term exposure of alcohol from the pregnant individual to newborn infant, there are withdrawal symptoms from the central nervous system depressant. These traits were characterized by tremors, hypertonia, restlessness, excessive mouthing movements, inconsolable crying and reflex abnormalities. There are direct effects known as fetal alcohol spectrum disorder.

Nicotine

Nicotine-exposed infants along with opioids may showcase more NAS signs. However, it is not certain if the effects is due to it being a transient drug effect or a true withdrawal. [19] There can be increase in tone and alertness with poor self-regulation. [20]

Causes

The drugs involved can include opioids, selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs) ethanol, benzodiazepines, anticonvulsants, and muscle relaxants to name a few. [21] [22] [1] [23] Opioids have become the most associated with NAS due to the growing opioid crisis leading to increased opioid use among pregnant people. Although NAS generally includes opioid and nonopioid exposures, studies have shown that such cases have primarily resulted from in utero opioid exposure; thus, resulting in the use of Neonatal Opioid Withdrawal Syndrome (NOWS) as a subset of NAS. [24] [25] [26] Neonatal abstinence syndrome does not happen in prenatal cocaine exposure (with babies exposed to cocaine in utero) in the sense that such symptoms are difficult to separate in the context of other factors such as prematurity or prenatal exposure to other drugs. [27]

Although the main pathophysiology of NAS is still not fully understood, there are several potential mechanisms and pathways that are being investigated that may be related to the development of NAS caused by abnormal levels of neurotransmitters and inadequate expression of opioid receptors. [21] Due to the differing substances that can lead to NAS, each substance can result in a different cause leading to the symptoms of NAS. [26] Examples of such differences include: opioid withdrawal resulting in decreases in serotonin and dopamine with an increase in corticotrophin, norepinephrine, and acetylcholine; TCA withdrawal resulting in a cholinergic rebound phenomenon; benzodiazepine withdrawal resulting in an increased release of g-aminobutyric acid (GABA); and methamphetamine withdrawal resulting in a decrease in dopamine, serotonin, and other monoamines. [26]

Risk factors

Several studies have shown that multiple risk factors, ranging from social aspects to genetics, can contribute to the severity of NAS and the recovery process. [21] [26] Mutations in the genes for opioid receptor expression (mu-opioid receptors OPRM1, delta-OPRD1, and kappa-OPRK1 genes) and the dopamine metabolism pathway (COMT gene) have been associated with quicker recovery resulting in shorter duration of treatment. [28] [21] [26] Environmental influences that can affect expression of the aforementioned genes, like DNA methylation that results in decreased OPRM1 gene expression, have also been associated with increased severity of NAS. [21] Some non-genetic risk factors include smoking and methadone use of the birthing person during pregnancy that can result in increased severity of NAS. [26]

Diagnosis

According to the 2020 guidelines from the American Academy of Pediatrics (referred to as the AAP 2020 Guidelines), diagnosis of NAS is determined through clinical assessment, neonatal testing, as well as diagnosis by exclusion to make sure that there are no other potential causes for the neonatal symptoms. [29] Additional to assessing the neonate, full evaluation of the social and medical history of the birthing person must also be done. [29]

Clinical assessment as described by the AAP 2020 Guidelines mainly consists of performing a standardized assessment to measure both the presence and severity of withdrawal symptoms being presented by the neonate at risk of NAS. [29] The main scoring system associated with this standardized assessment is the modified Finnegan score, also known as the Modified Finnegan Neonatal Abstinence Score. [29] The scoring system assesses the neonate and observes the severity of the following characteristics: crying; sleeping; moro reflex; tremor; increased muscle tone; excoriations of chin, knees, elbows, toes, and/or nose; myoclonic jerks; generalized convulsions; sweating; hypothermia; and many others. [30] [31] This same assessment can be used in assessing the response that the neonate is having to the chosen treatment. [29]

According to the AAP 2020 Guidelines, neonatal testing refers to laboratory testing of the infant's urine, meconium, and umbilical cord tissue. [29] Although these tests are recommended per guidelines, there are several considerations to understand when performing these tests. With urine toxicology tests, samples must be collected immediately after birth since these tests only capture a short window of substance exposure due to the rapid metabolism and elimination of most drugs of concern. [32] Although meconium and umbilical cord tissue testing provides a larger window of observation for substance exposure, it is not recommended if the birthing person is already receiving treatment for opioid use disorder (OUD) with frequent toxicology testing since this will not provide any additional information. [29]

Management

Objectives of management are to minimize negative outcomes and promote normal development. [33] Supportive care is the first step in management, but this is typically not enough and is complemented with medication. As of 2023, there have been three main guidelines that provide recommendations in regard to the treatment and prevention of NAS: 2023 guidelines from the Society of Obstetricians and Gynaecologists of Canada (referred to as the SOGC 2023 Guidelines), 2020 guidelines from the American Academy of Pediatrics (referred to as the AAP 2020 Guidelines), and the 2017 guidelines from the American College of Obstetricians and Gynecologists (referred to as the ACOG 2017 Guidelines). [29] [34] [35]

Setting of Care

According to the SOGC 2023 Guidelines, it is recommended that if a pregnant individual has been diagnosed with substance use disorder, then delivery of the infant must be done in a center that is equipped for monitoring of the infant for NAS. [34] Traditionally, if an infant has been diagnosed with NAS after proper monitoring, then management of the disease is often handled in the Neonatal Intensive Care Unit (NICU). As per the AAP 2020 Guidelines, it is no longer recommended to admit infants to the NICU if they only have NAS since this can cause more problems that can aggravate symptoms due to the loud and overly stimulating environment as well as create a traumatic experience for the birthing parent. [29]

Observation

According to the ACOG 2017 Guidelines, it is recommended that if the birthing parent has a history of opioid use during pregnancy, then the infant must be monitored by a pediatrician for the possibility of NAS. [35] Unfortunately these guidelines do not specify the length of monitoring. As of 2020 though, the AAP 2020 Guidelines provided more specific guidance in regards to the timeline recommended for monitoring. According to the AAP 2020 Guidelines, all infants who have been exposed to chronic opioid use of the birthing parent during pregnancy must be monitored for at least 72 hours. The guidelines go further into detail depending on the specific exposure: 3 days of monitoring if the substance were immediate-release opioids, 4-7 days if the substance was buprenorphine and sustained-released opioids, and 5-7 days if the substance was methadone. [29]

Nonpharmacologic Interventions

Non-medication based approaches to treat neonatal symptoms include swaddling the infant in a blanket, minimizing environmental stimuli, and monitoring sleeping and feeding patterns. [36] Breastfeeding promotes infant attachment and bonding and is associated with a decreased need for medication. These approaches may lessen the severity of NAS and lead to shorter hospital stays. [37]

Pharmacotherapy

Nonpharmacological interventions are usually prioritized for the treatment of infants with NAS, but for those experiencing severe opioid withdrawal then the use of medications is to be considered. [29] Medications are used to minimize clinical signs of withdrawal including fever, seizures, and weight loss or dehydration. [33] When pharmacotherapy is deemed necessary for severe opioid withdrawal, opioids are the treatment of choice and then they are slowly tapered down. [29] [38] [39] According to the AAP 2020 Guidelines, it is recommended to use opioids with a longer half-life like buprenorphine and methadone, but it is important to take caution if the preparation has a high alcohol content. Additionally, it is recommended that paregoric and deodorized tinctures of opium do not be used for treatment. Although naloxone is one of the recommended treatments for opioid withdrawal in adults, it is not recommended for the use of NAS due to the possibility of it precipitating rapid withdrawal and seizures. [29]

Phenobarbital helps to regain weight and reduces the duration of supportive care, but increases the duration of hospitalisation, compared to supportive care alone; phenobarbital seems to be more effective than diazepam or chlorpromazine. [40] Clonidine is an emerging add-on therapy. [41]

Opioids such as neonatal morphine solution and methadone are commonly used to treat clinical symptoms of opiate withdrawal, but may prolong neonatal drug exposure and duration of hospitalization. [42] A study demonstrated a shorter wean duration in infants treated with methadone compared to those treated with diluted tincture of opium. When compared to morphine, methadone has a longer half-life in children, which allows for less frequent dosing intervals and steady serum concentrations to prevent neonatal withdrawal symptoms. [43]

Epidemiology

NAS rates correlate with rates of opioid use disorder among pregnant individuals in the population. The misuse of opioids, along with other illicit substances by this group has increased since the early 2000s, all this while cases and this problem are likely being underreported. [38]

In 2012, a study inspected information on hospital discharges across 44 states in the United States, which totaled to 7.4 million discharges. Their goal was to measure NAS trends over the past 10 years. The study found that the number of pregnant individuals using opiates increased from 1.2 to 5.6 per 1,000 hospital births every year. [44]

A 2013 study examined the incidence of neonatal abstinence syndrome in 28 states. The researchers found that this rate increased by about 300% (from 1.5 cases to 6.0 cases per 1,000 hospital births) during 1999 to 2013. Along with these results, there have been considerable differences in state NAS incidence, with lows and highs ranging from 0.7 per 1,000 births in Hawaii, to 33.4 per 1,000 births in West Virginia. This contrasts could potentially come as a result of illegal opioid use prevalence, difference in state to state opioid prescribing rates, and/or the use of NAS diagnosis, all making it difficult to average national incidence of NAS. [45]

A 2017 Centers for Disease Control (CDC) report stated that the number of babies born with NAS increased nationally by 82% from 2010 to 2017. This correlates to a NAS rate of 7.3 per 1,000 hospital births. This increase was seen for the majority of the states that participated, however with variation between states. [46]

In 2023, the American Academy of Pediatrics (AAP) estimated that the incidence of NAS increased to 8.8 cases per 1,000 hospital births. This study also stated that this rate varied by region, agreeing with prior studies. [29]

In 2024, a study evaluated the early results of the 2020 American Academy of Pediatrics guidelines for managing neonatal opioid withdrawal symptoms. [47] These guidelines proposed using non-pharmacological approaches as first line treatment. [29] The study itself saw a reduction in infant NICU admission and pharmacological treatments. [47] More data is needed to evaluate the change in incidence trends after implementation of these guidelines. [48] [49]

Geography

Neonatal abstinence syndrome is a growing health issue amongst the country. While Ontario claims the highest rate of narcotic use in the country and one of the highest rates of prescription narcotic use in the world. [50] Northern cities such as North bay are influential contributors. The number of neonates born with addiction or experiencing withdrawal symptoms are increasing at an undesirable rate in North Bay from 22 babies in 2012-2013 to 48 babies born with NAS in 2014-2015. [51] Furthermore, North Bay Regional Health Centre was home to 10 NAS babies in January 2016 alone. [52] The dramatic growth in numbers of neonates born with drug addiction will continue to grow if not confronted and managed in a way that is specific and appropriate for the city of North Bay. 

Related Research Articles

Drug withdrawal, drug withdrawal syndrome, or substance withdrawal syndrome is the group of symptoms that occur upon the abrupt discontinuation or decrease in the intake of pharmaceutical or recreational drugs.

<span class="mw-page-title-main">Opioid use disorder</span> Medical condition

Opioid use disorder (OUD) is a substance use disorder characterized by cravings for opioids, continued use despite physical and/or psychological deterioration, increased tolerance with use, and withdrawal symptoms after discontinuing opioids. Opioid withdrawal symptoms include nausea, muscle aches, diarrhea, trouble sleeping, agitation, and a low mood. Addiction and dependence are important components of opioid use disorder.

<span class="mw-page-title-main">Buprenorphine</span> Opioid used to treat pain & opioid use disorder

Buprenorphine, sold under the brand name Subutex among others, is an opioid used to treat opioid use disorder, acute pain, and chronic pain. It can be used under the tongue (sublingual), in the cheek (buccal), by injection, as a skin patch (transdermal), or as an implant. For opioid use disorder, the patient must have moderate opioid withdrawal symptoms before buprenorphine can be administered under direct observation of a health-care provider.

<span class="mw-page-title-main">Fetal alcohol spectrum disorder</span> Group of conditions resulting from maternal alcohol consumption during pregnancy

Fetal alcohol spectrum disorders (FASDs) are a group of conditions that can occur in a person who is exposed to alcohol during gestation. FASD affects 1 in 20 Americans, but is highly mis- and under-diagnosed.

<span class="mw-page-title-main">Neonatology</span> Medical care of newborns, especially the ill or premature

Neonatology is a subspecialty of pediatrics that consists of the medical care of newborn infants, especially the ill or premature newborn. It is a hospital-based specialty and is usually practised in neonatal intensive care units (NICUs). The principal patients of neonatologists are newborn infants who are ill or require special medical care due to prematurity, low birth weight, intrauterine growth restriction, congenital malformations, sepsis, pulmonary hypoplasia, or birth asphyxia.

Substance dependence, also known as drug dependence, is a biopsychological situation whereby an individual's functionality is dependent on the necessitated re-consumption of a psychoactive substance because of an adaptive state that has developed within the individual from psychoactive substance consumption that results in the experience of withdrawal and that necessitates the re-consumption of the drug. A drug addiction, a distinct concept from substance dependence, is defined as compulsive, out-of-control drug use, despite negative consequences. An addictive drug is a drug which is both rewarding and reinforcing. ΔFosB, a gene transcription factor, is now known to be a critical component and common factor in the development of virtually all forms of behavioral and drug addictions, but not dependence.

Necrotizing enterocolitis (NEC) is an intestinal disease that affects premature or very low birth weight infants. Symptoms may include poor feeding, bloating, decreased activity, blood in the stool, vomiting of bile, multi-organ failure, and potentially death.

<span class="mw-page-title-main">Neonatal jaundice</span> Medical condition

Neonatal jaundice is a yellowish discoloration of the white part of the eyes and skin in a newborn baby due to high bilirubin levels. Other symptoms may include excess sleepiness or poor feeding. Complications may include seizures, cerebral palsy, or kernicterus.

Antenatal steroids, also known as antenatal corticosteroids, are medications administered to pregnant women expecting a preterm birth. When administered, these steroids accelerate the maturation of the fetus' lungs, which reduces the likelihood of infant respiratory distress syndrome and infant mortality. The effectiveness of this corticosteroid treatment on humans was first demonstrated in 1972 by Sir Graham Liggins and Ross Howie, during a randomized control trial using betamethasone.

<span class="mw-page-title-main">Clorazepate</span> Benzodiazepine medication

Clorazepate, sold under the brand name Tranxene among others, is a benzodiazepine medication. It possesses anxiolytic, anticonvulsant, sedative, hypnotic, and skeletal muscle relaxant properties. Clorazepate is an unusually long-lasting benzodiazepine and serves as a prodrug for the equally long-lasting desmethyldiazepam, which is rapidly produced as an active metabolite. Desmethyldiazepam is responsible for most of the therapeutic effects of clorazepate.

Gray baby syndrome is a rare but serious, even fatal, side effect that occurs in newborn infants following the accumulation of the antibiotic chloramphenicol. Chloramphenicol is a broad-spectrum antibiotic that has been used to treat a variety of bacteria infections like Streptococcus pneumoniae as well as typhoid fever, meningococcal sepsis, cholera, and eye infections. Chloramphenicol works by binding to ribosomal subunits which blocks transfer ribonucleic acid (RNA) and prevents the synthesis of bacterial proteins. Chloramphenicol has also been used to treat neonates born before 37 weeks of the gestational period for prophylactic purposes. In 1958, newborns born prematurely due to rupture of the amniotic sac were given chloramphenicol to prevent possible infections, and it was noticed that these newborns had a higher mortality rate compared with those who were not treated with the antibiotic. Over the years, chloramphenicol has been used less in clinical practice due to the risks of toxicity not only to neonates, but also to adults due to the risk of aplastic anemia. Chloramphenicol is now reserved to treat certain severe bacteria infections that were not successfully treated with other antibiotic medications.

Post-acute withdrawal syndrome (PAWS) is a hypothesized set of persistent impairments that occur after withdrawal from alcohol, opiates, benzodiazepines, antidepressants, and other substances. Infants born to mothers who used substances of dependence during pregnancy may also experience a PAWS. While PAWS has been frequently reported by those withdrawing from opiate and alcohol dependence, the research has limitations. Protracted benzodiazepine withdrawal has been observed to occur in some individuals prescribed benzodiazepines.

Women should speak to their doctor or healthcare professional before starting or stopping any medications while pregnant. Drugs taken in pregnancy including over-the counter-medications, prescription medications, nutritional supplements, recreational drugs, and illicit drugs may cause harm to the mother or the unborn child. Non-essential drugs and medications should be avoided while pregnant. Tobacco, alcohol, marijuana, and illicit drug use while pregnant may be dangerous for the unborn baby and may lead to severe health problems and/or birth defects. Even small amounts of alcohol, tobacco, and marijuana have not been proven to be safe when taken while pregnant. In some cases, for example, if the mother has epilepsy or diabetes, the risk of stopping a medication may be worse than risks associated with taking the medication while pregnant. The mother's healthcare professional will help make these decisions about the safest way to protect the health of both the mother and unborn child. In addition to medications and substances, some dietary supplements are important for a healthy pregnancy, however, others may cause harm to the unborn child.

Prenatal cocaine exposure (PCE), theorized in the 1970s, occurs when a pregnant woman uses cocaine including crack cocaine and thereby exposes her fetus to the drug. Babies whose mothers used cocaine while pregnant supposedly have increased risk of several different health issues during growth and development and are colloquially known as crack babies.

<span class="mw-page-title-main">Buprenorphine/naloxone</span> Opioid treatment

Buprenorphine/naloxone, sold under the brand name Suboxone among others, is a fixed-dose combination medication that includes buprenorphine and naloxone. It is used to treat opioid use disorder, and reduces the mortality of opioid use disorder by 50%. It relieves cravings to use and withdrawal symptoms. Buprenorphine/­naloxone is available for use in two different forms, under the tongue or in the cheek.

<span class="mw-page-title-main">Neonatal infection</span> Human disease

Neonatal infections are infections of the neonate (newborn) acquired during prenatal development or within the first four weeks of life. Neonatal infections may be contracted by mother to child transmission, in the birth canal during childbirth, or after birth. Neonatal infections may present soon after delivery, or take several weeks to show symptoms. Some neonatal infections such as HIV, hepatitis B, and malaria do not become apparent until much later. Signs and symptoms of infection may include respiratory distress, temperature instability, irritability, poor feeding, failure to thrive, persistent crying and skin rashes.

The Finnegan scoring system is used to quantify and diagnose neonatal withdrawal or abstinence (NAS) syndrome. This is a withdrawal syndrome of infants, caused by the cessation of the administration of licit or illicit drugs. Neonatal abstinence syndrome is a group of problems that occur in a newborn who was exposed to addictive opiate or other drugs in utero. There are two types of NAS: prenatal and postnatal. Prenatal NAS is caused by discontinuation of drugs taken by the pregnant mother, while postnatal NAS is caused by discontinuation of drugs directly to the infant. The twenty-one signs of withdrawal are scored. The scoring assessment is based upon the pathological significance and severity of the symptoms. Symptoms can be managed with medication. Though lengthy, it remains when used by trained clinicians. Bias and subjectivity can have some affect. The Finnegan scale is also used to assess the effectiveness of treatment and recovery of the infant. Assessment is performed and then scored. A daily score is calculated. The decision to treat the infant may be based upon a higher score. The Finnegan scale is used with assessment of comorbidities, prematurity, and clinician experience to guide treatment.

Hendrée E. Jones is a researcher on women's substance abuse disorders and its impact on children. She is a professor in the Department of Obstetrics and Gynecology at the University of North Carolina School of Medicine, and adjunct professor in the University of North Carolina College of Arts & Sciences Department of Psychology and Neuroscience. Jones is the executive director of the UNC Horizons Program, which is a comprehensive drug treatment program for mothers and their drug-exposed children. She is a consultant for the Substance Abuse and Mental Health Services Administration, the United Nations, and the World Health Organization.

<span class="mw-page-title-main">Opioid withdrawal</span> Withdrawal symptoms of opiates

Opioid withdrawal is a set of symptoms arising from the sudden cessation or reduction of opioids where previous usage has been heavy and prolonged. Signs and symptoms of withdrawal can include drug craving, anxiety, restless legs syndrome, nausea, vomiting, diarrhea, sweating, and an elevated heart rate. Opioid use triggers a rapid adaptation in cellular signaling pathways that, when reduced or stopped, can cause adverse physiological effects. All opioids, both recreational drugs and medications, when reduced or stopped, can lead to opioid withdrawal symptoms. When withdrawal symptoms are due to recreational opioid use, the term opioid use disorder is used, whereas when due to prescribed medications, the term prescription opioid use disorder is used. Opioid withdrawal can be managed by the use of opioid replacement therapy, while symptoms may be relieved by the use of medications such as lofexidine and clonidine.

Opioid use during pregnancy can have significant implications for both the mother and the developing fetus.

References

  1. 1 2 Neonatal Abstinence Syndrome on eMedicine
  2. Hall RW, Boyle E, Young T (October 2007). "Do ventilated neonates require pain management?". Seminars in Perinatology. 31 (5): 289–297. doi:10.1053/j.semperi.2007.07.002. PMID   17905183.
  3. 1 2 "Neonatal abstinence syndrome: MedlinePlus Medical Encyclopedia". medlineplus.gov. Retrieved 2024-07-26.
  4. 1 2 3 "Neonatal Abstinence Syndrome". www.stanfordchildrens.org. Retrieved 2024-07-31.
  5. "Neonate: MedlinePlus Medical Encyclopedia". medlineplus.gov. Retrieved 2024-08-01.
  6. "Livedo reticularis: MedlinePlus Medical Encyclopedia". medlineplus.gov. Retrieved 2024-07-31.
  7. 1 2 Jansson LM, Patrick SW (2019-04-01). "Neonatal Abstinence Syndrome". Pediatric Clinics of North America. 66 (2): 353–367. doi:10.1016/j.pcl.2018.12.006. PMC   7605356 . PMID   30819342.
  8. Grossman M, Berkwitt A (2019-04-01). "Neonatal abstinence syndrome". Seminars in Perinatology. 43 (3): 173–186. doi:10.1053/j.semperi.2019.01.007. PMID   30773241.
  9. Anbalagan S, Falkowitz DM, Mendez MD (2024), "Neonatal Abstinence Syndrome", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   31855342 , retrieved 2024-08-02
  10. Maguire DJ, Taylor S, Armstrong K, Shaffer-Hudkins E, Germain AM, Brooks SS, et al. (2016). "Long-Term Outcomes of Infants with Neonatal Abstinence Syndrome". Neonatal Network. 35 (5): 277–286. doi:10.1891/0730-0832.35.5.277. ISSN   0730-0832. PMID   27636691.
  11. Behnke M, Smith VC, COMMITTEE ON SUBSTANCE ABUSE, COMMITTEE ON FETUS AND NEWBORN, Behnke M, Smith VC, et al. (2013-03-01). "Prenatal Substance Abuse: Short- and Long-term Effects on the Exposed Fetus". Pediatrics. 131 (3): e1009–e1024. doi:10.1542/peds.2012-3931. ISSN   0031-4005. PMC   8194464 . PMID   23439891.
  12. Hudak ML, Tan RC, THE COMMITTEE ON DRUGS, THE COMMITTEE ON FETUS AND NEWBORN, Frattarelli DA, Galinkin JL, et al. (2012-02-01). "Neonatal Drug Withdrawal". Pediatrics. 129 (2): e540–e560. doi:10.1542/peds.2011-3212. ISSN   0031-4005. PMID   22291123.
  13. Navarrete F, García-Gutiérrez MS, Gasparyan A, Austrich-Olivares A, Femenía T, Manzanares J (2020). "Cannabis Use in Pregnant and Breastfeeding Women: Behavioral and Neurobiological Consequences". Frontiers in Psychiatry. 11: 586447. doi: 10.3389/fpsyt.2020.586447 . ISSN   1664-0640. PMC   7667667 . PMID   33240134.
  14. Navarrete F, García-Gutiérrez MS, Gasparyan A, Austrich-Olivares A, Femenía T, Manzanares J (2020). "Cannabis Use in Pregnant and Breastfeeding Women: Behavioral and Neurobiological Consequences". Frontiers in Psychiatry. 11: 586447. doi: 10.3389/fpsyt.2020.586447 . ISSN   1664-0640. PMC   7667667 . PMID   33240134.
  15. de Moraes Barros MC, Guinsburg R, de Araújo Peres C, Mitsuhiro S, Chalem E, Laranjeira RR (December 2006). "Exposure to marijuana during pregnancy alters neurobehavior in the early neonatal period". The Journal of Pediatrics. 149 (6): 781–787. doi:10.1016/j.jpeds.2006.08.046. ISSN   0022-3476. PMID   17137892.
  16. Chandler LS, Lane SJ (2014-06-03). Children With Prenatal Drug Exposure. Routledge. ISBN   978-1-317-82688-0.
  17. Bauer CR, Langer JC, Shankaran S, Bada HS, Lester B, Wright LL, et al. (September 2005). "Acute neonatal effects of cocaine exposure during pregnancy". Archives of Pediatrics & Adolescent Medicine. 159 (9): 824–834. doi:10.1001/archpedi.159.9.824. ISSN   1072-4710. PMID   16143741.
  18. "Alcohol". nida.nih.gov. Retrieved 2024-07-30.
  19. Liska SR (2014). "In utero exposure to Black Bull chewing tobacco and neonatal nicotine withdrawal: a review of the literature". Neonatal Network. 33 (1): 5–10. doi:10.1891/0730-0832.33.1.5. ISSN   1539-2880. PMID   24413030.
  20. Pichini S, Garcia-Algar O (June 2006). "In utero exposure to smoking and newborn neurobehavior: how to assess neonatal withdrawal syndrome?". Therapeutic Drug Monitoring. 28 (3): 288–290. doi:10.1097/01.ftd.0000211809.81816.1b. ISSN   0163-4356. PMID   16778707.
  21. 1 2 3 4 5 Kocherlakota P (August 2014) [March 7, 2014]. "Neonatal abstinence syndrome". Pediatrics. 134 (2): e547–e561. doi:10.1542/peds.2013-3524. PMID   25070299.
  22. Convertino I, Sansone AC, Marino A, Galiulo MT, Mantarro S, Antonioli L, et al. (October 2016). "Neonatal Adaptation Issues After Maternal Exposure to Prescription Drugs: Withdrawal Syndromes and Residual Pharmacological Effects". Drug Safety. 39 (10): 903–924. doi:10.1007/s40264-016-0435-8. PMID   27289228.
  23. Iqbal MM, Sobhan T, Ryals T (January 2002). "Effects of commonly used benzodiazepines on the fetus, the neonate, and the nursing infant". Psychiatric Services. 53 (1): 39–49. doi:10.1176/appi.ps.53.1.39. PMID   11773648.
  24. Patrick SW, Barfield WD, Poindexter BB (November 2020). "Neonatal Opioid Withdrawal Syndrome". Pediatrics. 146 (5): e2020029074. doi:10.1542/peds.2020-029074. PMID   33106341.
  25. Piccotti L, Voigtman B, Vongsa R, Nellhaus EM, Rodriguez KJ, Davies TH, et al. (May 2019). "Neonatal Opioid Withdrawal Syndrome: A Developmental Care Approach". Neonatal Network. 38 (3): 160–169. doi:10.1891/0730-0832.38.3.160. PMID   31470383.
  26. 1 2 3 4 5 6 Anbalagan S, Falkowitz DM, Mendez MD (2024). "Neonatal Abstinence Syndrome". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID   31855342 . Retrieved 2024-07-25.
  27. Mercer, J (2009). "Claim 9: "Crack babies" can't be cured and will always have serious problems". Child Development: Myths and Misunderstandings. Thousand Oaks, Calif: Sage Publications, Inc. pp. 62–64. ISBN   978-1-4129-5646-8.
  28. Wachman EM, Hayes MJ, Brown MS, Paul J, Harvey-Wilkes K, Terrin N, et al. (May 2013). "Association of OPRM1 and COMT single-nucleotide polymorphisms with hospital length of stay and treatment of neonatal abstinence syndrome". JAMA. 309 (17): 1821–1827. doi:10.1001/jama.2013.3411. PMC   4432911 . PMID   23632726.
  29. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Patrick SW, Barfield WD, Poindexter BB, COMMITTEE ON FETUS AND NEWBORN, COMMITTEE ON SUBSTANCE USE AND PREVENTION, Cummings J, Hand I, et al. (2020-11-01). "Neonatal Opioid Withdrawal Syndrome". Pediatrics. 146 (5). doi:10.1542/peds.2020-029074. ISSN   0031-4005. PMID   33106341.
  30. Finnegan LP, Kron RE, Connaughton JF, Emich JP (1975-07-01). "Assessment and treatment of abstinence in the infant of the drug-dependent mother". International Journal of Clinical Pharmacology and Biopharmacy. 12 (1–2): 19–32. ISSN   0340-0026. PMID   1100537.
  31. Finnegan LP, Connaughton JF, Kron RE, Emich JP (1975-01-01). "Neonatal abstinence syndrome: assessment and management". Addictive Diseases. 2 (1–2): 141–158. ISSN   0094-0267. PMID   1163358.
  32. Beauman SS (May–June 2005). "Identification and Management of Neonatal Abstinence Syndrome". Journal of Infusion Nursing. 28 (3): 159–167. doi:10.1097/00129804-200505000-00003. ISSN   1533-1458. PMID   15912070.
  33. 1 2 McQueen K, Murphy-Oikonen J (December 2016). "Neonatal Abstinence Syndrome". The New England Journal of Medicine. 375 (25): 2468–2479. doi:10.1056/NEJMra1600879. PMID   28002715.
  34. 1 2 Turner S, Allen VM, Carson G, Graves L, Tanguay R, Green CR, et al. (2023-11-01). "Guideline No. 443b: Opioid Use Throughout Women's Lifespan: Opioid Use in Pregnancy and Breastfeeding". Journal of Obstetrics and Gynaecology Canada. 45 (11): 102144. doi:10.1016/j.jogc.2023.05.012. ISSN   1701-2163. PMID   37977721.
  35. 1 2 "Committee Opinion No. 711: Opioid Use and Opioid Use Disorder in Pregnancy". Obstetrics & Gynecology. 130 (2): e81–e94. 2017 [2017-08]. doi:10.1097/AOG.0000000000002235. ISSN   0029-7844. PMID   28742676.
  36. Lee K. "Neonatal abstinence Syndrome". MedlinePlus. U.S. National Library of Medicine. Retrieved 2 November 2014.
  37. Pritham UA, Paul JA, Hayes MJ (March 2012). "Opioid dependency in pregnancy and length of stay for neonatal abstinence syndrome". Journal of Obstetric, Gynecologic, and Neonatal Nursing. 41 (2): 180–190. doi:10.1111/j.1552-6909.2011.01330.x. PMC   3407283 . PMID   22375882.
  38. 1 2 Hudak ML, Tan RC (February 2012). "Neonatal drug withdrawal". Pediatrics. 129 (2): e540–e560. doi:10.1542/peds.2011-3212. PMID   22291123.
  39. Zankl A, Martin J, Davey JG, Osborn DA (7 Jul 2021). "Opiate treatment for opiate withdrawal in newborn infants". The Cochrane Database of Systematic Reviews. 2021 (7): CD002059. doi:10.1002/14651858.CD002059.pub4. PMC   8261830 . PMID   34231914.
  40. Zankl A, Martin J, Davey JG, Osborn DA (18 May 2021). "Sedatives for opiate withdrawal in newborn infants". The Cochrane Database of Systematic Reviews. 2021 (5): CD002053. doi:10.1002/14651858.CD002053.pub4. PMC   8129634 . PMID   34002380.
  41. Kraft WK, van den Anker JN (October 2012). "Pharmacologic management of the opioid neonatal abstinence syndrome". Pediatric Clinics of North America. 59 (5): 1147–1165. doi:10.1016/j.pcl.2012.07.006. PMC   4709246 . PMID   23036249.
  42. Logan BA, Brown MS, Hayes MJ (March 2013). "Neonatal abstinence syndrome: treatment and pediatric outcomes". Clinical Obstetrics and Gynecology. 56 (1): 186–192. doi:10.1097/GRF.0b013e31827feea4. PMC   3589586 . PMID   23314720.
  43. Johnson MR, Nash DR, Laird MR, Kiley RC, Martinez MA (July 2014). "Development and implementation of a pharmacist-managed, neonatal and pediatric, opioid-weaning protocol". The Journal of Pediatric Pharmacology and Therapeutics. 19 (3): 165–173. doi:10.5863/1551-6776-19.3.165. PMC   4187529 . PMID   25309146.
  44. Patrick SW, Schumacher RE, Benneyworth BD, Krans EE, McAllister JM, Davis MM (May 2012). "Neonatal abstinence syndrome and associated health care expenditures: United States, 2000-2009". JAMA. 307 (18): 1934–1940. doi:10.1001/jama.2012.3951. PMID   22546608.
  45. "Hudak ML, Tan RC, The Committee on Drugs and the Committee on Fetus and Newborn. Neonatal Drug Withdrawal. Pediatrics . 2012;129;e540". Pediatrics. 133 (5): 937–938. 2014-05-01. doi:10.1542/peds.2014-0557. ISSN   0031-4005.
  46. Hirai AH, Ko JY, Owens PL, Stocks C, Patrick SW (January 2021). "Neonatal Abstinence Syndrome and Maternal Opioid-Related Diagnoses in the US, 2010-2017". JAMA. 325 (2): 146–155. doi:10.1001/jama.2020.24991. PMC   7804920 . PMID   33433576.
  47. 1 2 Hahn PD, Graham DA, Ozonoff A, Milliren CE (July 2024). "Neonatal Opioid Withdrawal Syndrome Treatment Guidelines and Birth Hospital Utilization". Pediatrics. 154 (1). doi:10.1542/peds.2023-063635. PMID   38899388.
  48. "Neonatal Abstinence Syndrome and Associated Health Care Expenditures: United States, 2000-2009". JournalistsResource.org, retrieved May 15, 2012
  49. Patrick SW, Schumacher RE, Benneyworth BD, Krans EE, McAllister JM, Davis MM (May 2012). "Neonatal abstinence syndrome and associated health care expenditures: United States, 2000-2009". JAMA. 307 (18): 1934–1940. doi:10.1001/jama.2012.3951. PMID   22546608.
  50. Dow K, Ordean A, Murphy-Oikonen J, Pereira J, Koren G, Roukema H, et al. (2012). "Neonatal abstinence syndrome clinical practice guidelines for Ontario" (PDF). Journal of Population Therapeutics and Clinical Pharmacology = Journal de la Therapeutique des Populations et de la Pharmacologie Clinique. 19 (3): e488–506. PMID   23241498.
  51. Leslie K (2015). "Officials can't explain increase in North Bay babies born to addicted moms". CTV News.
  52. Sheikh I. "North Bay's struggle with opioid-dependent babies". TVO.