Rh disease | |
---|---|
Other names | Rhesus isoimmunization, Rh (D) disease, rhesus incompatibility |
Specialty | Paediatrics, haematology, transfusion medicine |
Causes | Incompatibility between mother antibodies and fetal Rhesus factor |
Diagnostic method | Blood compatibility testing, sonography, physical assessment |
Prevention | Administration of antibody therapy to the mother |
Treatment | Prophylactic antibody therapy, intrauterine transfusion |
Medication | Rho(D) immune globulin |
Frequency | Of maternal-fetal blood incompatibilities: 16% without antibody therapy, 0.1% with therapy |
Rh disease (also known as rhesus isoimmunization , Rh (D) disease, or rhesus incompatibility, and blue baby disease) is a type of hemolytic disease of the fetus and newborn (HDFN). HDFN due to anti-D antibodies is the proper and currently used name for this disease as the Rh blood group system actually has more than 50 antigens and not only the D-antigen. The term "Rh Disease" is commonly used to refer to HDFN due to anti-D antibodies, and prior to the discovery of anti-Rho(D) immune globulin, it was the most common type of HDFN. The disease ranges from mild to severe, and occurs in the second or subsequent pregnancies of Rh-D negative women when the biologic father is Rh-D positive.
Due to several advances in modern medicine, HDFN due to anti-D is preventable by treating the mother during pregnancy and soon after delivery with an injection of anti-Rho(D) immune globulin (Rhoclone, Rhogam, AntiD). With successful mitigation of this disease by prevention through the use of anti-Rho(D) immune globulin, other antibodies are more commonly the cause of HDFN today.
Symptoms of Rh disease include yellowish amniotic fluid and enlarged spleen, liver or heart or buildup of fluid in the abdomen of the fetus. [1]
During the first pregnancy, the Rh- mother's initial exposure to fetal Rh+ red blood cells (RBCs) is usually not sufficient to activate her Rh-recognizing B cells. However, during delivery, the placenta separates from the uterine wall, causing umbilical cord blood to enter the maternal circulation, which results in the mother's proliferation of IgM-secreting plasma B cells to eliminate the fetal Rh+ cells from her blood stream. IgM antibodies do not cross the placental barrier, which is why no effects to the fetus are seen in first pregnancies for Rh-D mediated disease. However, in subsequent pregnancies with Rh+ fetuses, the IgG memory B cells mount an immune response when re-exposed, and these IgG anti-Rh(D) antibodies do cross the placenta and enter fetal circulation. These antibodies are directed against the Rhesus (Rh) factor, a protein found on the surface of the fetal RBCs. The antibody-coated RBCs are destroyed by IgG antibodies binding and activating complement pathways. [3]
The resulting anemia has multiple sequelae: [4] [5] [6]
The destruction of RBCs leads to elevated bilirubin levels (hyperbilirubinemia) as a byproduct. This is not generally a problem during pregnancy, as the maternal circulation can compensate. However, once the infant is delivered, the immature system is not able to handle this amount of bilirubin alone and jaundice or kernicterus (bilirubin deposition in the brain) can develop which may lead to brain damage or death. Sensitizing events during pregnancy include c-section, miscarriage, therapeutic abortion, amniocentesis, ectopic pregnancy, abdominal trauma and external cephalic version. However, in many cases there was no apparent sensitizing event. Approximately 50% of Rh-D positive infants with circulating anti-D are either unaffected or only mildly affected requiring no treatment at all and only monitoring. An additional 20% are severely affected and require transfusions while still in the uterus. This pattern is similar to other types of HDFN due to other commonly encountered antibodies (anti-c, anti-K, and Fy(a)).[ citation needed ]
In the United States, it is a standard of care to test all expecting mothers for the presence or absence of the RhD protein on their RBCs. However, when medical care is unavailable or prenatal care not given for any other reason, the window to prevent the disease may be missed. In addition, there is more widespread use of molecular techniques to avoid missing women who appear to be Rh-D positive but are actually missing portions of the protein or have hybrid genes creating altered expression of the protein and still at risk of HDFN due to Anti-D. [7] [8]
Blood is generally drawn from the biological father to help determine fetal antigen status. [10] If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDFN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. [11]
In an RhD negative mother, Rho(D) immune globulin can prevent temporary sensitization of the maternal immune system to RhD antigens, which can cause rhesus disease in the current or in subsequent pregnancies. With the widespread use of RhIG, Rh disease of the fetus and newborn has almost disappeared in the developed world. The risk that an RhD negative mother can be alloimmunized by a RhD positive fetus can be reduced from approximately 16% to less than 0.1% by the appropriate administration of RhIG.[ citation needed ]
In Arar, Saudi Arabia, results of a study showed that women had a low level of knowledge regarding maternal-fetal blood incompatibility (about 38% of the studied mothers during the research, had knowledge about Rh incompatibility). Regarding their knowledge about anti-D, researchers found that; 68.5% of the mothers had knowledge about it, while only 51% of the mothers had knowledge about the administration of prophylactic anti D after delivery. [12]
As medical management advances in this field, it is important that these patients be followed by high risk obstetricians/maternal-fetal medicine, and skilled neonatologists postpartum to ensure the most up to date and appropriate standard of care[ citation needed ]
In 1939 Drs. Philip Levine and Rufus E. Stetson published their findings about a 25-year-old mother who had a stillborn baby that died of hemolytic disease of the newborn. [16] Both parents were blood group O, so the husband's blood was used to give his wife a blood transfusion due to blood loss during delivery. However, she had a severe transfusion reaction. Since both parents were blood group O, which was believed to be compatible for transfusion, they concluded that there must be a previously undiscovered blood group antigen that was present on the husband's red blood cells (RBCs) but not present on his wife's. This suggested for the first time that a mother could make blood group antibodies because of immune sensitization to her fetus's RBCs as her only previous exposure would be the earlier pregnancy. They did not name this blood group antigen at the time, which is why the discovery of the rhesus blood type is credited to Drs. Karl Landsteiner and Alexander S. Wiener [17] with their first publication of their tables for blood-typing and cross-matching in 1940, which was the culmination of years of work. However, there were multiple participants in this scientific race and almost simultaneous publications on this topic. Levine published his theory that the disease known as erythroblastosis fetalis was due to Rh alloimmunization in 1941 while Landsteiner and Wiener published their method to type patients for an antibody causing transfusion reactions, known as “Rh". [18] [19] [20]
The first treatment for Rh disease was an exchange transfusion invented by Wiener [21] and later refined by Dr. Harry Wallerstein. [22] Approximately 50,000 infants received this treatment. However, this could only treat the disease after it took root and did not do anything to prevent the disease. In 1960, Ronald Finn, in Liverpool, England proposed that the disease might be prevented by injecting the at-risk mother with an antibody against fetal red blood cells (anti-RhD). [23] Nearly simultaneously, Dr. William Pollack, [24] an immunologist and protein chemist at Ortho Pharmaceutical Corporation, and Dr. John Gorman (blood bank director at Columbia-Presbyterian) with Dr. Vincent Freda (an obstetrician at Columbia-Presbyterian Medical Center), came to the same realization in New York City. The three of them set out to prove it by injecting a group of male prisoners at Sing Sing Correctional Facility with antibody provided by Ortho, obtained by a fractionation technique developed by Pollack. [25]
Animal studies had previously been conducted by Dr. Pollack using a rabbit model of Rh. [26] This model, named the rabbit HgA-F system, was an animal model of human Rh, and enabled Pollack's team to gain experience in preventing hemolytic disease in rabbits by giving specific HgA antibody, as was later done with Rh-negative mothers. One of the needs was a dosing experiment that could be used to determine the level of circulating Rh-positive cells in an Rh-negative pregnant female derived from her Rh-positive fetus. This was first done in the rabbit system, but subsequent human tests at the University of Manitoba conducted under Dr. Pollack's direction confirmed that anti-Rho(D) immune globulin could prevent alloimmunization during pregnancy.[ citation needed ]
Ms. Marianne Cummins was the first at risk woman to receive a prophylactic injection of anti-Rho(D) immune globulin (RHIG) after its regulatory approval. [27] Clinical trials were set up in 42 centers in the US, Great Britain, Germany, Sweden, Italy, and Australia. RHIG was finally approved in England and the United States in 1968. [28] The FDA approved the drug under the brand name RhoGAM, with a fixed dose of 300 μg, to be given within three days (72 hours) postpartum. Subsequently, a broader peripartum period was approved for dosing which included prophylaxis during pregnancy. Within a year, the antibody had been injected with great success into more than 500,000 women. Time magazine picked it as one of the top ten medical achievements of the 1960s. By 1973, it was estimated that in the US alone, over 50,000 babies' lives had been saved. The use of Rh immune globulin to prevent the disease in babies of Rh negative mothers has become standard practice, and the disease, which used to claim the lives of 10,000 babies each year in the US alone, has been virtually eradicated in the developed world. In 1980, Cyril Clarke, Ronald Finn, John G. Gorman, Vincent Freda, and William Pollack each received an Albert Lasker Award for Clinical Medical Research for their work on rhesus blood types and the prevention of Rh disease.[ citation needed ]
A blood type is a classification of blood, based on the presence and absence of antibodies and inherited antigenic substances on the surface of red blood cells (RBCs). These antigens may be proteins, carbohydrates, glycoproteins, or glycolipids, depending on the blood group system. Some of these antigens are also present on the surface of other types of cells of various tissues. Several of these red blood cell surface antigens can stem from one allele and collectively form a blood group system.
Amniocentesis is a medical procedure used primarily in the prenatal diagnosis of genetic conditions. It has other uses such as in the assessment of infection and fetal lung maturity. Prenatal diagnostic testing, which includes amniocentesis, is necessary to conclusively diagnose the majority of genetic disorders, with amniocentesis being the gold-standard procedure after 15 weeks' gestation.
Hemolytic disease of the newborn, also known as hemolytic disease of the fetus and newborn, HDN, HDFN, or erythroblastosis fetalis, is an alloimmune condition that develops in a fetus at or around birth, when the IgG molecules produced by the mother pass through the placenta. Among these antibodies are some which attack antigens on the red blood cells in the fetal circulation, breaking down and destroying the cells. The fetus can develop reticulocytosis and anemia. The intensity of this fetal disease ranges from mild to very severe, and fetal death from heart failure can occur. When the disease is moderate or severe, many erythroblasts are present in the fetal blood, earning these forms of the disease the name erythroblastosis fetalis.
The direct and indirect Coombs tests, also known as antiglobulin test (AGT), are blood tests used in immunohematology. The direct Coombs test detects antibodies that are stuck to the surface of the red blood cells. Since these antibodies sometimes destroy red blood cells they can cause anemia; this test can help clarify the condition. The indirect Coombs test detects antibodies that are floating freely in the blood. These antibodies could act against certain red blood cells; the test can be carried out to diagnose reactions to a blood transfusion.
Hydrops fetalis or hydrops foetalis is a condition in the fetus characterized by an accumulation of fluid, or edema, in at least two fetal compartments. By comparison, hydrops allantois or hydrops amnion is an accumulation of excessive fluid in the allantoic or amniotic space, respectively.
Rho(D) immune globulin (RhIG) is a medication used to prevent RhD isoimmunization in mothers who are RhD negative and to treat idiopathic thrombocytopenic purpura (ITP) in people who are Rh positive. It is often given both during and following pregnancy. It may also be used when RhD-negative people are given RhD-positive blood. It is given by injection into muscle or a vein. A single dose lasts 12 weeks. It is made from human blood plasma.
In ABO hemolytic disease of the newborn maternal IgG antibodies with specificity for the ABO blood group system pass through the placenta to the fetal circulation where they can cause hemolysis of fetal red blood cells which can lead to fetal anemia and HDN. In contrast to Rh disease, about half of the cases of ABO HDN occur in a firstborn baby and ABO HDN does not become more severe after further pregnancies.
Hemolytic disease of the newborn (anti-Kell1) is the second most common cause of severe hemolytic disease of the newborn (HDN) after Rh disease. Anti-Kell1 is becoming relatively more important as prevention of Rh disease is also becoming more effective.
Hemolytic disease of the newborn (anti-Rhc) can range from a mild to a severe disease. It is the third most common cause of severe HDN. Rh disease is the most common and hemolytic disease of the newborn (anti-Kell) is the second most common cause of severe HDN. It occurs more commonly in women who are Rh D negative.
The Kell antigen system is a human blood group system, that is, a group of antigens on the human red blood cell surface which are important determinants of blood type and are targets for autoimmune or alloimmune diseases which destroy red blood cells. The Kell antigens are K, k, Kpa, Kpb, Jsa and Jsb. The Kell antigens are peptides found within the Kell protein, a 93-kilodalton transmembrane zinc-dependent endopeptidase which is responsible for cleaving endothelin-3.
The Rh blood group system is a human blood group system. It contains proteins on the surface of red blood cells. After the ABO blood group system, it is the most likely to be involved in transfusion reactions. The Rh blood group system consisted of 49 defined blood group antigens in 2005. As of 2023, there are over 50 antigens among which the five antigens D, C, c, E, and e are the most important. There is no d antigen. Rh(D) status of an individual is normally described with a positive (+) or negative (−) suffix after the ABO type. The terms Rh factor, Rh positive, and Rh negative refer to the Rh(D) antigen only. Antibodies to Rh antigens can be involved in hemolytic transfusion reactions and antibodies to the Rh(D) and Rh antigens confer significant risk of hemolytic disease of the newborn.
Neonatal alloimmune thrombocytopenia is a disease that affects babies in which the platelet count is decreased because the mother's immune system attacks her fetus' or newborn's platelets. A low platelet count increases the risk of bleeding in the fetus and newborn. If the bleeding occurs in the brain, there may be long-term effects.
Hemolytic disease of the newborn (anti-RhE) is caused by the anti-RhE antibody of the Rh blood group system. The anti-RhE antibody can be naturally occurring, or arise following immune sensitization after a blood transfusion or pregnancy.
Type II hypersensitivity, in the Gell and Coombs classification of allergic reactions, is an antibody mediated process in which IgG and IgM antibodies are directed against antigens on cells or extracellular material. This subsequently leads to cell lysis, tissue damage or loss of function through mechanisms such as
Fetal-maternal haemorrhage is the loss of fetal blood cells into the maternal circulation. It takes place in normal pregnancies as well as when there are obstetric or trauma related complications to pregnancy.
Immune tolerance in pregnancy or maternal immune tolerance is the immune tolerance shown towards the fetus and placenta during pregnancy. This tolerance counters the immune response that would normally result in the rejection of something foreign in the body, as can happen in cases of spontaneous abortion. It is studied within the field of reproductive immunology.
Rh factor testing, also known as Rhesus factor testing, is the procedure of determining the Rhesus D status of an individual.
An Intrauterine transfusion (IUT) is a procedure that provides blood to a fetus, most commonly through the umbilical cord. It is used in cases of severe fetal anemia, such as when fetal red blood cells are being destroyed by maternal antibodies, or parvovirus B19 infection, homozygous alpha-thalassemia, or twin-to-twin transfusion syndrome. IUTs are performed by perinatologists at hospitals or specialized centers.
Ruth Renter Darrow (1895–1956) was an American pathologist who was the first to identify the cause of hemolytic disease of the newborn (HDN). In 1938, three years prior to the discovery of antibodies against the Rh antigen, Darrow correctly hypothesized that the disease was caused by destruction of red blood cells due to antibodies in the mother's blood. Darrow's research was inspired by her personal experiences with the disease.
Blood compatibility testing is conducted in a medical laboratory to identify potential incompatibilities between blood group systems in blood transfusion. It is also used to diagnose and prevent some complications of pregnancy that can occur when the baby has a different blood group from the mother. Blood compatibility testing includes blood typing, which detects the antigens on red blood cells that determine a person's blood type; testing for unexpected antibodies against blood group antigens ; and, in the case of blood transfusions, mixing the recipient's plasma with the donor's red blood cells to detect incompatibilities (crossmatching). Routine blood typing involves determining the ABO and RhD type, and involves both identification of ABO antigens on red blood cells and identification of ABO antibodies in the plasma. Other blood group antigens may be tested for in specific clinical situations.
{{cite book}}
: |journal=
ignored (help)