An Intrauterine transfusion (IUT) is a procedure that provides blood to a fetus, most commonly through the umbilical cord. [1] [2] It is used in cases of severe fetal anemia, such as when fetal red blood cells are being destroyed by maternal antibodies. IUTs are performed by perinatologists at hospitals or specialized centers. [3]
Intrauterine transfusion (IUT) was introduced in 1963 by A.W. Liley. Early IUTs involved transfusion into the fetal peritoneum (abdomen). Almost 20 years later, the procedure was improved to a transfusion into the umbilical vein, which allowed for better absorption of red blood cells. [4]
Hemolytic disease of the fetus and newborn (HDFN) is a rare condition that affects 3 out of 100,000 to 80 out of 100,000 patients per year. It occurs when maternal antibodies cross the placenta during pregnancy and destroy fetal red blood cells (RBCs). This process can lead to fetal anemia, and in severe cases can progress to hydrops (edema), ascites, heart failure, and death. [5]
For HDFN to occur, the fetus must be antigen positive (paternally inherited) and the mother must have antibodies to the given antigen. Such antibodies typically form when the mother undergoes alloimmunization to the antigen during a previous pregnancy or transfusion. Historically, RhD alloimmunization accounted for the majority of cases. However, the rates of these cases have been significantly reduced by RhIg (RhoGam) administration. Measures are not available for preventing alloimmunization to non-RhD antigens (Kell, Duffy, Rhc, RhE, etc.), which can also cause HDFN. [5]
Fetal anemia is monitored throughout pregnancy using Doppler measurement of the middle cerebral artery (MCA) peak systolic velocity (PSV). This non-invasive technique is used as a surrogate measurement for assessing fetal anemia. Doppler multiples of median (MoM) measurements exceeding 1.5 are correlated with moderate to severe anemia. At this point, invasive testing via percutaneous umbilical cord blood sampling (PUBS, also called cordocentesis), potentially followed by fetal transfusion is indicated. [5]
Prior to the procedure, compatible blood is obtained. This is usually type O, RhD-negative, and antigen-negative for maternal RBC antibodies. The selected blood then undergoes irradiation and leukocyte reduction. [5] Antenatal corticosteroids are typically given to mothers before IUT to anticipate the need for an emergency cesarean section [4]
The procedure is usually performed in a hospital under sterile conditions, within or near an operating room in case an emergency cesarean section is necessary due to complications caused by the procedure. The mother's abdomen is cleaned with an antiseptic solution, and she may or may not be given a local anesthetic injection to numb the abdominal area where the transfusion needle will be inserted. During the procedure, medicine may be given to the fetus to temporarily stop fetal movement. [3]
An ultrasound is performed to view the position of the fetus and to help guide the needle. The first step is to locate a relatively stable segment of the umbilical cord. The procedure may be achieved with more ease if the placenta is in the anterior position. However, if the placenta is in the posterior position, the fetus might block direct access to the umbilical cord. Once a suitable location is established, the needle is inserted through the mother's abdomen into an umbilical vessel using ultrasound guidance. If insertion into an umbilical vessel is not possible, blood may be transfused into the fetal abdomen.[ citation needed ]
Prior to the transfusion, percutaneous umbilical cord blood sampling (PUBS) is conducted. The fetal blood sample is drawn and immediately analyzed for hematocrit using an automated analyzer in the operating room or hospital hematology laboratory. The result confirms the level of fetal anemia and indicates the correct amount of blood to be transfused.
With the needle still in place, the blood is delivered into the fetus's umbilical cord blood vessel. Following the transfusion, an additional blood sample is drawn and analyzed to determine the ending hematocrit level. The target hematocrit is usually at least 40. In a study of 135 IUTs performed on 56 fetuses, the mean hematocrit was 25.2 before IUT and 40.3 after IUT. This study also noted that repeated IUTs were generally needed in anemic fetuses. In this study, there was a median of two IUTs per fetus, with a range of one to seven. [4]
An IUT is typically only performed when the fetus is known or suspected to have life-threatening anemia. Risks of intrauterine transfusions may include uterine infection, fetal infection, preterm labor, excessive bleeding and mixing of fetal and maternal blood, amniotic fluid leakage from the uterus, or (rarely) fetal death. Fetal survival rates after intrauterine transfusion through the umbilical cord are more than 90% for fetuses that do not have hydrops and about 75% for fetuses that have hydrops. [3]
In a study of 135 IUTs performed on 56 fetuses over 14 years, 121 (90%) of the procedures were uneventful. In 14 cases, (10%), mild adverse events occurred. The most common mild events were prolonged hemorrhage from the puncture site and uterine contractions. In two cases, these led to a severe adverse event: one emergency cesarean section within 24 hours after IUT and one preterm birth within 7 days after IUT. There were no fetal or neonatal deaths in the study population. [4]
Risks associated with an IUT may be avoided by delivering the fetus (via induction or cesarean section) if an acceptable gestational age has been reached. Following delivery, the majority of neonates will require treatment such as phototherapy and top-up transfusion and/or exchange transfusion. [4]
Amniocentesis is a medical procedure used primarily in the prenatal diagnosis of genetic conditions. It has other uses such as in the assessment of infection and fetal lung maturity. Prenatal diagnostic testing, which includes amniocentesis, is necessary to conclusively diagnose the majority of genetic disorders, with amniocentesis being the gold-standard procedure after 15 weeks' gestation.
Rh disease is a type of hemolytic disease of the fetus and newborn (HDFN). HDFN due to anti-D antibodies is the proper and currently used name for this disease as the Rh blood group system actually has more than 50 antigens and not only the D-antigen. The term "Rh Disease" is commonly used to refer to HDFN due to anti-D antibodies, and prior to the discovery of anti-Rho(D) immune globulin, it was the most common type of HDFN. The disease ranges from mild to severe, and occurs in the second or subsequent pregnancies of Rh-D negative women when the biologic father is Rh-D positive.
Twin-to-twin transfusion syndrome (TTTS), also known as feto-fetal transfusion syndrome (FFTS), twin oligohydramnios-polyhydramnios sequence (TOPS) and stuck twin syndrome, is a complication of monochorionic multiple pregnancies in which there is disproportionate blood supply between the fetuses. This leads to unequal levels of amniotic fluid between each fetus and usually leads to death of the undersupplied twin and, without treatment, usually death or a range of birth defects or disabilities for a surviving twin, such as underdeveloped, damaged or missing limbs, digits or organs, especially cerebral palsy.
Hemolytic disease of the newborn, also known as hemolytic disease of the fetus and newborn, HDN, HDFN, or erythroblastosis foetalis, is an alloimmune condition that develops in a fetus at or around birth, when the IgG molecules produced by the mother pass through the placenta. Among these antibodies are some which attack antigens on the red blood cells in the fetal circulation, breaking down and destroying the cells. The fetus can develop reticulocytosis and anemia. The intensity of this fetal disease ranges from mild to very severe, and fetal death from heart failure can occur. When the disease is moderate or severe, many erythroblasts are present in the fetal blood, earning these forms of the disease the name erythroblastosis fetalis.
The direct and indirect Coombs tests, also known as antiglobulin test (AGT), are blood tests used in immunohematology. The direct Coombs test detects antibodies that are stuck to the surface of the red blood cells. Since these antibodies sometimes destroy red blood cells they can cause anemia; this test can help clarify the condition. The indirect Coombs test detects antibodies that are floating freely in the blood. These antibodies could act against certain red blood cells; the test can be carried out to diagnose reactions to a blood transfusion.
Hydrops fetalis or hydrops foetalis is a condition in the fetus characterized by an accumulation of fluid, or edema, in at least two fetal compartments. By comparison, hydrops allantois or hydrops amnion is an accumulation of excessive fluid in the allantoic or amniotic space, respectively.
Rho(D) immune globulin (RhIG) is a medication used to prevent RhD isoimmunization in mothers who are RhD negative and to treat idiopathic thrombocytopenic purpura (ITP) in people who are Rh positive. It is often given both during and following pregnancy. It may also be used when RhD-negative people are given RhD-positive blood. It is given by injection into muscle or a vein. A single dose lasts 12 weeks. It is made from human blood plasma.
In ABO hemolytic disease of the newborn maternal IgG antibodies with specificity for the ABO blood group system pass through the placenta to the fetal circulation where they can cause hemolysis of fetal red blood cells which can lead to fetal anemia and HDN. In contrast to Rh disease, about half of the cases of ABO HDN occur in a firstborn baby and ABO HDN does not become more severe after further pregnancies.
Hemolytic disease of the newborn (anti-Kell1) is the second most common cause of severe hemolytic disease of the newborn (HDN) after Rh disease. Anti-Kell1 is becoming relatively more important as prevention of Rh disease is also becoming more effective.
Hemolytic disease of the newborn (anti-Rhc) can range from a mild to a severe disease. It is the third most common cause of severe HDN. Rh disease is the most common and hemolytic disease of the newborn (anti-Kell) is the second most common cause of severe HDN. It occurs more commonly in women who are Rh D negative.
The Kell antigen system is a human blood group system, that is, a group of antigens on the human red blood cell surface which are important determinants of blood type and are targets for autoimmune or alloimmune diseases which destroy red blood cells. The Kell antigens are K, k, Kpa, Kpb, Jsa and Jsb. The Kell antigens are peptides found within the Kell protein, a 93-kilodalton transmembrane zinc-dependent endopeptidase which is responsible for cleaving endothelin-3.
The Colton antigen system (Co) is present on the membranes of red blood cells and in the tubules of the kidney and helps determine a person's blood type. The Co antigen is found on a protein called aquaporin-1 which is responsible for water homeostasis and urine concentration.
The Rh blood group system is a human blood group system. It contains proteins on the surface of red blood cells. After the ABO blood group system, it is the most likely to be involved in transfusion reactions. The Rh blood group system consisted of 49 defined blood group antigens in 2005. As of 2023, there are over 50 antigens among which the five antigens D, C, c, E, and e are the most important. There is no d antigen. Rh(D) status of an individual is normally described with a positive (+) or negative (−) suffix after the ABO type. The terms Rh factor, Rh positive, and Rh negative refer to the Rh(D) antigen only. Antibodies to Rh antigens can be involved in hemolytic transfusion reactions and antibodies to the Rh(D) and Rh antigens confer significant risk of hemolytic disease of the fetus and newborn
Neonatal alloimmune thrombocytopenia is a disease that affects babies in which the platelet count is decreased because the mother's immune system attacks her fetus' or newborn's platelets. A low platelet count increases the risk of bleeding in the fetus and newborn. If the bleeding occurs in the brain, there may be long-term effects.
Hemolytic disease of the newborn (anti-RhE) is caused by the anti-RhE antibody of the Rh blood group system. The anti-RhE antibody can be naturally occurring, or arise following immune sensitization after a blood transfusion or pregnancy.
Percutaneous umbilical cord blood sampling (PUBS), also called cordocentesis, fetal blood sampling, or umbilical vein sampling is a diagnostic genetic test that examines blood from the fetal umbilical cord to detect fetal abnormalities. Fetal and maternal blood supply are typically connected in utero with one vein and two arteries to the fetus. The umbilical vein is responsible for delivering oxygen rich blood to the fetus from the mother; the umbilical arteries are responsible for removing oxygen poor blood from the fetus. This allows for the fetus’ tissues to properly perfuse. PUBS provides a means of rapid chromosome analysis and is useful when information cannot be obtained through amniocentesis, chorionic villus sampling, or ultrasound ; this test carries a significant risk of complication and is typically reserved for pregnancies determined to be at high risk for genetic defect. It has been used with mothers with immune thrombocytopenic purpura.
Immune tolerance in pregnancy or maternal immune tolerance is the immune tolerance shown towards the fetus and placenta during pregnancy. This tolerance counters the immune response that would normally result in the rejection of something foreign in the body, as can happen in cases of spontaneous abortion. It is studied within the field of reproductive immunology.
Circumvallate placenta is a rare condition affecting about 1-2% of pregnancies, in which the amnion and chorion fetal membranes essentially "double back" on the fetal side around the edges of the placenta. After delivery, a circumvallate placenta has a thick ring of membranes on its fetal surface. Circumvallate placenta is a placental morphological abnormality associated with increased fetal morbidity and mortality due to the restricted availability of nutrients and oxygen to the developing fetus.
Rh factor testing, also known as Rhesus factor testing, is the procedure of determining the rhesus D status of an individual.