Haematopoietic system

Last updated
Haematopoietic system
Hematopoesis EN.svg
Sites of haematopoiesis periods before and after birth.
Details
FunctionCreation of the cells of blood.
Identifiers
MeSH D006413
FMA 9667
Anatomical terminology

The haematopoietic system is the system in the body involved in the creation of the cells of blood. [1]

Contents

Structure

Stem cells

Haematopoietic stem cells (HSCs) reside in the medulla of the bone (bone marrow) and have the unique ability to give rise to all of the different mature blood cell types and tissues. [2] [3] HSCs are self-renewing cells: when they differentiate, at least some of their daughter cells remain as HSCs, so the pool of stem cells is not depleted. This phenomenon is called asymmetric division. [4] The other daughters of HSCs (myeloid and lymphoid progenitor cells) can follow any of the other differentiation pathways that lead to the production of one or more specific types of blood cell, but cannot renew themselves. The pool of progenitors is heterogeneous and can be divided into two groups; long-term self-renewing HSC and only transiently self-renewing HSC, also called short-terms. [5] This is one of the main vital processes in the body.

Development

In developing embryos, blood formation occurs in aggregates of blood cells in the yolk sac, called blood islands. As development progresses, blood formation occurs in the spleen, liver and lymph nodes. When bone marrow develops, it eventually assumes the task of forming most of the blood cells for the entire organism. [3] However, maturation, activation, and some proliferation of lymphoid cells occurs in the spleen, thymus, and lymph nodes. In children, haematopoiesis occurs in the marrow of the long bones such as the femur and tibia. In adults, it occurs mainly in the pelvis, cranium, vertebrae, and sternum. [6]

Function

Haematopoiesis (from Greek αἷμα, "blood" and ποιεῖν "to make"; also hematopoiesis in American English; sometimes also haemopoiesis or hemopoiesis) is the formation of blood cellular components. All cellular blood components are derived from haematopoietic stem cells. [3] In a healthy adult person, approximately 1011–1012 new blood cells are produced daily in order to maintain steady state levels in the peripheral circulation. [7] [8]

All blood cells are divided into three lineages. [9]

Clinical significance

Stem cell transplant

A stem cell transplant is a transplant intended to replace the progenitor hematopoietic stem cells

Hematopoietic stem cell transplantation (HSCT) is the transplantation of multipotent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood. [10] [11] [12] It may be autologous (the patient's own stem cells are used), allogeneic (the stem cells come from a donor) or syngeneic (from an identical twin). [10] [11]

It is most often performed for patients with certain cancers of the blood or bone marrow, such as multiple myeloma or leukemia. [11] In these cases, the recipient's immune system is usually destroyed with radiation or chemotherapy before the transplantation. Infection and graft-versus-host disease are major complications of allogeneic HSCT. [11]

Hematopoietic stem cell transplantation remains a dangerous procedure with many possible complications; it is reserved for patients with life-threatening diseases. As survival following the procedure has increased, its use has expanded beyond cancer to autoimmune diseases [13] [14] and hereditary skeletal dysplasias; notably malignant infantile osteopetrosis [15] [16] and mucopolysaccharidosis. [17]

Related Research Articles

<span class="mw-page-title-main">Haematopoiesis</span> Formation of blood cellular components

Haematopoiesis is the formation of blood cellular components. All cellular blood components are derived from haematopoietic stem cells. In a healthy adult human, roughly ten billion to a hundred billion new blood cells are produced per day, in order to maintain steady state levels in the peripheral circulation.

<span class="mw-page-title-main">Bone marrow</span> Semi-solid tissue in the spongy portions of bones

Bone marrow is a semi-solid tissue found within the spongy portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production. It is composed of hematopoietic cells, marrow adipose tissue, and supportive stromal cells. In adult humans, bone marrow is primarily located in the ribs, vertebrae, sternum, and bones of the pelvis. Bone marrow comprises approximately 5% of total body mass in healthy adult humans, such that a man weighing 73 kg (161 lbs) will have around 3.7 kg (8 lbs) of bone marrow.

<span class="mw-page-title-main">Osteopetrosis</span> Rare disease of the bones

Osteopetrosis, literally "stone bone", also known as marble bone disease or Albers-Schönberg disease, is an extremely rare inherited disorder whereby the bones harden, becoming denser, in contrast to more prevalent conditions like osteoporosis, in which the bones become less dense and more brittle, or osteomalacia, in which the bones soften. Osteopetrosis can cause bones to dissolve and break.

<span class="mw-page-title-main">Hematopoietic stem cell transplantation</span> Medical procedure to replace blood or immune stem cells

Hematopoietic stem-cell transplantation (HSCT) is the transplantation of multipotent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood in order to replicate inside of a patient and to produce additional normal blood cells. It may be autologous, allogeneic or syngeneic.

<span class="mw-page-title-main">Hematopoietic stem cell</span> Stem cells that give rise to other blood cells

Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. In vertebrates, the very first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within the (midgestational) aorta-gonad-mesonephros region, through a process known as endothelial-to-hematopoietic transition. In adults, haematopoiesis occurs in the red bone marrow, in the core of most bones. The red bone marrow is derived from the layer of the embryo called the mesoderm.

<span class="mw-page-title-main">CD34</span> Cluster of differentiation protocol that identifies cell surface antigens.

CD34 is a transmembrane phosphoglycoprotein protein encoded by the CD34 gene in humans, mice, rats and other species.

<span class="mw-page-title-main">Cell therapy</span> Therapy in which cellular material is injected into a patient

Cell therapy is a therapy in which viable cells are injected, grafted or implanted into a patient in order to effectuate a medicinal effect, for example, by transplanting T-cells capable of fighting cancer cells via cell-mediated immunity in the course of immunotherapy, or grafting stem cells to regenerate diseased tissues.

<span class="mw-page-title-main">Myeloid tissue</span> Tissue of bone marrow

Myeloid tissue, in the bone marrow sense of the word myeloid, is tissue of bone marrow, of bone marrow cell lineage, or resembling bone marrow, and myelogenous tissue is any tissue of, or arising from, bone marrow; in these senses the terms are usually used synonymously, as for example with chronic myeloid/myelogenous leukemia.

<span class="mw-page-title-main">Extramedullary hematopoiesis</span> Medical condition

Extramedullary hematopoiesis refers to hematopoiesis occurring outside of the medulla of the bone. It can be physiologic or pathologic.

The aorta-gonad-mesonephros (AGM) is a region of embryonic mesoderm that develops during embryonic development from the para-aortic splanchnopleura in chick, mouse and human embryos. The very first adult definitive haematopoietic stem cells, capable of long-term multilineage repopulation of adult irradiated recipients, originate from the ventral endothelial wall of the embryonic dorsal aorta, through an endothelial transdifferentiation process referred to as an 'endothelial-to-haematopoietic transition' (EHT). In the mouse embryo, these very first HSCs are characterised by their expression of Ly6A-GFP (Sca1), CD31, CD34, cKit, CD27, CD41, Gata2, Runx1, Notch1, and BMP amongst others.

<span class="mw-page-title-main">Granulopoiesis</span> Part of haematopoiesis, that leads to the production of granulocytes

Granulopoiesis is a part of haematopoiesis, that leads to the production of granulocytes. A granulocyte, also referred to as a polymorphonuclear leukocyte (PMN), is a type of white blood cell that has multi lobed nuclei, usually containing three lobes, and has a significant amount of cytoplasmic granules within the cell. Granulopoiesis takes place in the bone marrow. It leads to the production of three types of mature granulocytes: neutrophils, eosinophils and basophils.

<span class="mw-page-title-main">Treosulfan</span> Medication given to people before they have a bone marrow transplant

Treosulfan, sold under the brand name Trecondi, is a medication given to people before they have a bone marrow transplant from a donor known as allogeneic hematopoietic stem cell transplantation. It is used as a 'conditioning' treatment to clear the bone marrow and make room for the transplanted bone marrow cells, which can then produce healthy blood cells. It is used together with another medicine called fludarabine in adults and children from one month of age with blood cancers as well as in adults with other severe disorders requiring a bone marrow transplant.

<span class="mw-page-title-main">CFU-GEMM</span>

CFU-GEMM is a colony forming unit that generates myeloid cells. CFU-GEMM cells are the oligopotential progenitor cells for myeloid cells; they are thus also called common myeloid progenitor cells or myeloid stem cells. "GEMM" stands for granulocyte, erythrocyte, monocyte, megakaryocyte.

CFU-Meg is a colony forming unit. Haematopoiesis in the bone marrow starts off from a haematopoietic stem cell (HSC) and this can differentiate into the myeloid and lymphoid cell lineages. In order to eventually produce a megakaryocyte, the haematopoietic stem cell must generate myeloid cells, so it becomes a common myeloid progenitor, CFU-GEMM. This in turn develops into CFU-Meg, which is the colony forming unit that leads to the production of megakaryocytes.

<span class="mw-page-title-main">Megakaryocyte–erythroid progenitor cell</span>

Megakaryocyte–erythroid progenitor cells, among other blood cells, are generated as a result of hematopoiesis, which occurs in the bone marrow. Hematopoietic stem cells can differentiate into one of two progenitor cells: the common lymphoid progenitor and the common myeloid progenitor. MEPs derive from the common myeloid progenitor lineage. Megakaryocyte/erythrocyte progenitor cells must commit to becoming either platelet-producing megakaryocytes via megakaryopoiesis or erythrocyte-producing erythroblasts via erythropoiesis. Most of the blood cells produced in the bone marrow during hematopoiesis come from megakaryocyte/erythrocyte progenitor cells.

Many human blood cells, such as red blood cells (RBCs), immune cells, and even platelets all originate from the same progenitor cell, the hematopoietic stem cell (HSC). As these cells are short-lived, there needs to be a steady turnover of new blood cells and the maintenance of an HSC pool. This is broadly termed hematopoiesis. This event requires a special environment, termed the hematopoietic stem cell niche, which provides the protection and signals necessary to carry out the differentiation of cells from HSC progenitors. This niche relocates from the yolk sac to eventually rest in the bone marrow of mammals. Many pathological states can arise from disturbances in this niche environment, highlighting its importance in maintaining hematopoiesis.

Clonal hypereosinophilia, also termed primary hypereosinophilia or clonal eosinophilia, is a grouping of hematological disorders all of which are characterized by the development and growth of a pre-malignant or malignant population of eosinophils, a type of white blood cell that occupies the bone marrow, blood, and other tissues. This population consists of a clone of eosinophils, i.e. a group of genetically identical eosinophils derived from a sufficiently mutated ancestor cell.

<span class="mw-page-title-main">Malignant infantile osteopetrosis</span> Human disease

Malignant infantile osteopetrosis is a rare osteosclerosing type of skeletal dysplasia that typically presents in infancy and is characterized by a unique radiographic appearance of generalized hyperostosis.

Since haematopoietic stem cells cannot be isolated as a pure population, it is not possible to identify them under a microscope. Therefore, there are many techniques to isolate haematopoietic stem cells (HSCs). HSCs can be identified or isolated by the use of flow cytometry where the combination of several different cell surface markers is used to separate the rare HSCs from the surrounding blood cells. HSCs lack expression of mature blood cell markers and are thus, called Lin-. Lack of expression of lineage markers is used in combination with detection of several positive cell-surface markers to isolate HSCs. In addition, HSCs are characterized by their small size and low staining with vital dyes such as rhodamine 123 or Hoechst 33342.

<span class="mw-page-title-main">Christa Muller-Sieburg</span> German-American Immunologist and Hematologist

Christa Edith Muller-Sieburg was a German-American immunologist and hematologist, whose work became central to the understanding of the clonal heterogeneity of hematopoietic stem cells (HSCs). Muller-Sieburg is known for her contributions to the purification of hematopoietic stem cells, the characterization of individual stem cell clones and her revision of the process of hematopoiesis.

References

  1. "hematopoietic system". Merriam-Webster. Retrieved 8 July 2019.
  2. Monga I, Kaur K, Dhanda S (March 2022). "Revisiting hematopoiesis: applications of the bulk and single-cell transcriptomics dissecting transcriptional heterogeneity in hematopoietic stem cells". Briefings in Functional Genomics. 21 (3): 159–176. doi:10.1093/bfgp/elac002. PMID   35265979.
  3. 1 2 3 Birbrair, Alexander; Frenette, Paul S. (2016-03-01). "Niche heterogeneity in the bone marrow". Annals of the New York Academy of Sciences. 1370 (1): 82–96. Bibcode:2016NYASA1370...82B. doi:10.1111/nyas.13016. ISSN   1749-6632. PMC   4938003 . PMID   27015419.
  4. Morrison, J.; Judith Kimble (2006). "Asymmetric and symmetric stem-cell divisions in development and cancer" (PDF). Nature. 441 (7097): 1068–74. Bibcode:2006Natur.441.1068M. doi:10.1038/nature04956. hdl: 2027.42/62868 . PMID   16810241. S2CID   715049.
  5. Morrison, SJ; Weissman, IL (Nov 1994). "The long-term repopulating subset of hematopoietic stem cells is deterministic and isolable by phenotype". Immunity. 1 (8): 661–73. doi:10.1016/1074-7613(94)90037-x. PMID   7541305.
  6. Fernández, KS; de Alarcón, PA (Dec 2013). "Development of the hematopoietic system and disorders of hematopoiesis that present during infancy and early childhood". Pediatric Clinics of North America. 60 (6): 1273–89. doi:10.1016/j.pcl.2013.08.002. PMID   24237971.
  7. Semester 4 medical lectures at Uppsala University 2008 by Leif Jansson
  8. Parslow, T G.; Stites, DP.; Terr, AI.; Imboden JB. (1997). Medical Immunology (1 ed.). ISBN   978-0-8385-6278-9.
  9. "Hematopoiesis from Pluripotent Stem Cells". ThermoFisher Scientific. Retrieved 3 February 2014.
  10. 1 2 Felfly, H; Haddad, GG (2014). "Hematopoietic stem cells: potential new applications for translational medicine". Journal of Stem Cells. 9 (3): 163–97. PMID   25157450.
  11. 1 2 3 4 Park, B; Yoo, KH; Kim, C (December 2015). "Hematopoietic stem cell expansion and generation: the ways to make a breakthrough". Blood Research. 50 (4): 194–203. doi:10.5045/br.2015.50.4.194. PMC   4705045 . PMID   26770947.
  12. Mahla RS (2016). "Stem cells application in regenerative medicine and disease threpeutics". International Journal of Cell Biology. 2016 (7): 1–24. doi: 10.1155/2016/6940283 . PMC   4969512 . PMID   27516776.
  13. Tyndall A, Fassas A, Passweg J, et al. (1999). "Autologous haematopoietic stem cell transplants for autoimmune disease–feasibility and transplant-related mortality. Autoimmune Disease and Lymphoma Working Parties of the European Group for Blood and Marrow Transplantation, the European League Against Rheumatism and the International Stem Cell Project for Autoimmune Disease". Bone Marrow Transplant. 24 (7): 729–34. doi:10.1038/sj.bmt.1701987. PMID   10516675.
  14. Burt RK, Loh Y, Pearce W, et al. (2008). "Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases". JAMA. 299 (8): 925–36. doi: 10.1001/jama.299.8.925 . PMID   18314435.
  15. EL-Sobky TA, El-Haddad A, Elsobky E, Elsayed SM, Sakr HM (March 2017). "Reversal of skeletal radiographic pathology in a case of malignant infantile osteopetrosis following hematopoietic stem cell transplantation". The Egyptian Journal of Radiology and Nuclear Medicine. 48 (1): 237–43. doi: 10.1016/j.ejrnm.2016.12.013 .
  16. Hashemi Taheri AP, Radmard AR, Kooraki S, Behfar M, Pak N, Hamidieh AA, Ghavamzadeh A (September 2015). "Radiologic resolution of malignant infantile osteopetrosis skeletal changes following hematopoietic stem cell transplantation". Pediatric Blood & Cancer. 62 (9): 1645–49. doi:10.1002/pbc.25524. PMID   25820806. S2CID   11287381.
  17. Langereis EJ, den Os MM, Breen C, Jones SA, Knaven OC, Mercer J, Miller WP, Kelly PM, Kennedy J, Ketterl TG, O'Meara A, Orchard PJ, Lund TC, van Rijn RR, Sakkers RJ, White KK, Wijburg FA (March 2016). "Progression of Hip Dysplasia in Mucopolysaccharidosis Type I Hurler After Successful Hematopoietic Stem Cell Transplantation". The Journal of Bone and Joint Surgery. 98 (5): 386–95. doi:10.2106/JBJS.O.00601. PMID   26935461.