Deep cerebellar nuclei

Last updated
Deep cerebellar nuclei
Gray707.png
Sagittal section through right cerebellar hemisphere. The right olive has also been cut sagittally. (Dentate nucleus labelled at top as nucleus dentatus)
Diagram of the Microanatomy of Human Cerebellar Cortex.svg
Microcircuitry of the cerebellum. Excitatory synapses are denoted by (+) and inhibitory synapses by (-).
MF: Mossy fiber.
DCN: Deep cerebellar nuclei.
IO: Inferior olive.
CF: Climbing fiber.
GC: Granule cell.
PF: Parallel fiber.
PC: Purkinje cell.
GgC: Golgi cell.
SC: Stellate cell.
BC: Basket cell.
Details
Part of Cerebellum
Parts Dentate nucleus, Emboliform nucleus, Fastigial nucleus, Globose nucleus
Artery Superior cerebellar
Identifiers
Latin nuclei cerebelli
MeSH D002529
NeuroNames 682
NeuroLex ID birnlex_1568
TA98 A14.1.07.406
TA2 5835
FMA 72249
Anatomical terms of neuroanatomy

There are four paired deep cerebellar nuclei embedded in the white matter centre of the cerebellum. The nuclei are the fastigial, globose, emboliform, and dentate nuclei.

Contents

In lower mammals the emboliform nucleus appears to be continuous with the globose nucleus, and these are known together as the interposed nucleus. [1]

Inputs

These nuclei receive inhibitory (GABAergic) inputs from Purkinje cells in the cerebellar cortex and excitatory (glutamatergic) inputs from mossy fiber and climbing fiber pathways. Most output fibers of the cerebellum originate from these nuclei. One exception is that fibers from the flocculonodular lobe synapse directly on vestibular nuclei without first passing through the deep cerebellar nuclei. The vestibular nuclei in the brainstem are analogous structures to the deep nuclei, since they receive both mossy fiber and Purkinje cell inputs. [2]

Specific nuclei

From lateral to medial, the four deep cerebellar nuclei are the dentate, emboliform, globose, and fastigial. Some animals, including humans, do not have distinct emboliform and globose nuclei, instead having a single, fused interposed nucleus.[ citation needed ] In animals with distinct emboliform and globose nuclei, the term interposed nucleus is often used to refer collectively to these two nuclei.

Topography

In general, each pair of deep nuclei is associated with a corresponding region of cerebellar surface anatomy.

These structural relationships are generally maintained in the neuronal connections between the nuclei and associated cerebellar cortex,

Related Research Articles

<span class="mw-page-title-main">Cerebellum</span> Structure at the rear of the vertebrate brain, beneath the cerebrum

The cerebellum is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as it or even larger. In humans, the cerebellum plays an important role in motor control and cognitive functions such as attention and language as well as emotional control such as regulating fear and pleasure responses, but its movement-related functions are the most solidly established. The human cerebellum does not initiate movement, but contributes to coordination, precision, and accurate timing: it receives input from sensory systems of the spinal cord and from other parts of the brain, and integrates these inputs to fine-tune motor activity. Cerebellar damage produces disorders in fine movement, equilibrium, posture, and motor learning in humans.

In neuroanatomy, a nucleus is a cluster of neurons in the central nervous system, located deep within the cerebral hemispheres and brainstem. The neurons in one nucleus usually have roughly similar connections and functions. Nuclei are connected to other nuclei by tracts, the bundles (fascicles) of axons extending from the cell bodies. A nucleus is one of the two most common forms of nerve cell organization, the other being layered structures such as the cerebral cortex or cerebellar cortex. In anatomical sections, a nucleus shows up as a region of gray matter, often bordered by white matter. The vertebrate brain contains hundreds of distinguishable nuclei, varying widely in shape and size. A nucleus may itself have a complex internal structure, with multiple types of neurons arranged in clumps (subnuclei) or layers.

<span class="mw-page-title-main">Inferior olivary nucleus</span> Brain structure in the medulla that helps coordinate movement

The inferior olivary nucleus (ION) is a structure found in the medulla oblongata underneath the superior olivary nucleus. In vertebrates, the ION is known to coordinate signals from the spinal cord to the cerebellum to regulate motor coordination and learning. These connections have been shown to be tightly associated, as degeneration of either the cerebellum or the ION results in degeneration of the other.

<span class="mw-page-title-main">Cerebellar vermis</span> Structure connecting the two cerebellar hemispheres

The cerebellar vermis is located in the medial, cortico-nuclear zone of the cerebellum, which is in the posterior fossa of the cranium. The primary fissure in the vermis curves ventrolaterally to the superior surface of the cerebellum, dividing it into anterior and posterior lobes. Functionally, the vermis is associated with bodily posture and locomotion. The vermis is included within the spinocerebellum and receives somatic sensory input from the head and proximal body parts via ascending spinal pathways.

<span class="mw-page-title-main">Arbor vitae (anatomy)</span> White matter of the cerebellum

The arbor vitae is the cerebellar white matter, so called for its branched, tree-like appearance. In some ways it more resembles a fern and is present in both cerebellar hemispheres. It brings sensory and motor information to and from the cerebellum. The arbor vitae is located deep in the cerebellum. Situated within the arbor vitae are the deep cerebellar nuclei; the dentate, globose, emboliform and the fastigial nuclei. These four different structures lead to the efferent projections of the cerebellum.

<span class="mw-page-title-main">Inferior cerebellar peduncle</span>

The inferior cerebellar peduncle is formed by fibers of the restiform body that join with fibers from the much smaller juxtarestiform body. The inferior cerebellar peduncle is the smallest of the three cerebellar peduncles.

<span class="mw-page-title-main">Dentate nucleus</span> Nucleus in the centre of each cerebellar hemisphere

The dentate nucleus is a cluster of neurons, or nerve cells, in the central nervous system that has a dentate – tooth-like or serrated – edge. It is located within the deep white matter of each cerebellar hemisphere, and it is the largest single structure linking the cerebellum to the rest of the brain. It is the largest and most lateral, or farthest from the midline, of the four pairs of deep cerebellar nuclei, the others being the globose and emboliform nuclei, which together are referred to as the interposed nucleus, and the fastigial nucleus.

<span class="mw-page-title-main">Globose nucleus</span> Part of the interposed nucleus, a structure in the cerebellum.

The globose nucleus is one of the deep cerebellar nuclei. It is located medial to the emboliform nucleus, and lateral to the fastigial nucleus. The globose nucleus and emboliform nucleus are known collectively as the interposed nuclei.

The interposed nucleus is the combined paired globose and emboliform nuclei, on either side of the cerebellum.. It is located in the roof of the fourth ventricle, lateral to the fastigial nucleus. The emboliform nucleus is the anterior interposed nucleus, and the globose nucleus is the posterior interposed nucleus.

<span class="mw-page-title-main">Fastigial nucleus</span> Grey matter nucleus in the cerebellum

The fastigial nucleus is located in each cerebellar hemisphere. It is one of the four paired deep cerebellar nuclei of the cerebellum.

<span class="mw-page-title-main">Flocculus</span>

The flocculus is a small lobe of the cerebellum at the posterior border of the middle cerebellar peduncle anterior to the biventer lobule. Like other parts of the cerebellum, the flocculus is involved in motor control. It is an essential part of the vestibulo-ocular reflex, and aids in the learning of basic motor skills in the brain.

<span class="mw-page-title-main">Cerebellar peduncles</span> Structure connecting the cerebellum to the brainstem

The cerebellar peduncles are three paired bundles of fibres that connect the cerebellum to the brain stem.

<span class="mw-page-title-main">Superior cerebellar peduncle</span>

In the human brain, the superior cerebellar peduncle is one of the three paired cerebellar peduncles of bundled fibers that connect the cerebellum to the brainstem. The superior cerebellar peduncle connects to the midbrain. It consists mainly of efferent fibers, the cerebellothalamic tract that runs from a cerebellar hemisphere to the contralateral thalamus, and the cerebellorubral tract that runs from a cerebellar hemisphere to the red nucleus. It also contains afferent tracts, most prominent of which is the ventral spinocerebellar tract. Other afferent tracts are the ventral trigeminal tract, tectocerebellar fibers, and noradrenergic fibers from the locus coeruleus. The superior peduncle emerges from the upper and medial parts of the white matter of each cerebellar hemisphere and is placed under cover of the upper part of the cerebellum.

<span class="mw-page-title-main">Emboliform nucleus</span> Part of the interposed nucleus, a structure in the cerebellum

The emboliform nucleus is a deep cerebellar nucleus that lies immediately to the medial side of the dentate nucleus, partly covering its hilum. It is one of the four pairs of deep cerebellar nuclei, which are from lateral to medial: the dentate, emboliform, globose and fastigial. These nuclei can be seen using Weigert's elastic stain.

The vestibulocerebellar tract fibers are second-order fibers from the vestibular nuclei, and first-order fibers from the vestibular ganglion/nerve. They pass through the juxtarestiform body of the inferior cerebellar peduncle to reach the cerebellum, They terminate in the vestibulocerebellum, and part of the vermis as well as the dentate nucleus, and fastigial nucleus in each hemisphere They are involved in maintaining balance.

<span class="mw-page-title-main">Juxtarestiform body</span> Subdivision of the Inferior Cerebellar Penduncle

The juxtarestiform body is the smaller, medial subdivision of each inferior cerebellar peduncle.

<span class="mw-page-title-main">Pontocerebellar fibers</span>

The pontocerebellar fibers are the second-order neuron fibers of the corticopontocerebellar tracts that cross to the other side of the pons and run within the middle cerebellar peduncles, from the pons to the contralateral cerebellum. They arise from the pontine nuclei as the second part of the corticopontocerebellar tract, and decussate (cross-over) in the pons before passing through the middle cerebellar peduncles to reach and terminate in the contralateral posterior lobe of the cerebellum (neocerebellum). It is part of a pathway involved in the coordination of voluntary movements.

The cerebellothalamic tract or the tractus cerebellothalamicus, is part of the superior cerebellar peduncle. It originates in the cerebellar nuclei, crosses completely in the decussation of the superior cerebellar peduncle, bypasses the red nucleus, and terminates in posterior division of ventral lateral nucleus of thalamus. The ventrolateral nucleus has different divisions and distinct connections, mostly with frontal and parietal lobes. The primary motor cortex and premotor cortex get information from the ventrolateral nucleus projections originating in the interposed nucleus and dentate nuclei. Other dentate nucleus projections via thalamic pathway transmit information to prefrontal cortex and posterior parietal cortex. The cerebellum sends thalamocortical projections and in addition may also send connections from the thalamus to association areas serving cognitive and affective functions.

<span class="mw-page-title-main">Anatomy of the cerebellum</span> Structures in the cerebellum, a part of the brain

The anatomy of the cerebellum can be viewed at three levels. At the level of gross anatomy, the cerebellum consists of a tightly folded and crumpled layer of cortex, with white matter underneath, several deep nuclei embedded in the white matter, and a fluid-filled ventricle in the middle. At the intermediate level, the cerebellum and its auxiliary structures can be broken down into several hundred or thousand independently functioning modules or compartments known as microzones. At the microscopic level, each module consists of the same small set of neuronal elements, laid out with a highly stereotyped geometry.

References

  1. Carpenter, Malcolm B. (1985). Core text of neuroanatomy (3rd ed.). Baltimore: Williams & Wilkins. p. 207. ISBN   0683014552.
  2. Eric Kandel (2021). Principles of Neural Science (6th ed.). McGraw-Hill. p. 909-929