Intraparietal sulcus | |
---|---|
Details | |
Part of | Parietal lobe |
Identifiers | |
Latin | sulcus intraparietalis |
Acronym(s) | IPS |
NeuroNames | 97 |
NeuroLex ID | birnlex_4031 |
TA98 | A14.1.09.127 |
TA2 | 5475 |
FMA | 83772 |
Anatomical terms of neuroanatomy |
The intraparietal sulcus (IPS) is located on the lateral surface of the parietal lobe, and consists of an oblique and a horizontal portion. The IPS contains a series of functionally distinct subregions that have been intensively investigated using both single cell neurophysiology in primates [1] [2] and human functional neuroimaging. [3] Its principal functions are related to perceptual-motor coordination (e.g., directing eye movements and reaching) and visual attention, which allows for visually-guided pointing, grasping, and object manipulation that can produce a desired effect.
The intraparietal sulcus (IPS) plays a pivotal role in multisensory integration, particularly in linking visual and tactile information to guide complex motor actions. Beyond its established roles in numerical cognition and spatial attention, the IPS has emerged as a critical player in tool use and manipulation. [4]
The IPS is also thought to play a role in other functions, including processing symbolic numerical information, [5] visuospatial working memory, [6] decision-making, [7] and interpreting the intent of others. [8] [ unreliable medical source? ]
Five regions of the intraparietal sulcus (IPS): anterior, lateral, ventral, caudal, and medial
All of these areas have projections to the frontal lobe for executive control.
Activity in the intraparietal sulcus has also been associated with the learning of sequences of finger movements. [9]
The dorsal attention network includes the intraparietal sulcus of each hemisphere. [10] The intraparietal sulcus is activated during voluntary orientation of attention. [11]
Behavioral studies suggest that the IPS is associated with impairments of basic numerical magnitude processing and that there is a pattern of structural and functional alternations in the IPS and in the PFC in dyscalculia. [12] Children with developmental dyscalculia were found to have less gray matter in the left IPS. [13]
Studies have shown that electrical activity in a particular group of nerve cells in the intraparietal sulcus spiked when, and only when, volunteers were performing calculations. Outside experimental settings it was also found that when a patient mentioned a number—or even a quantitative reference, such as "some more", "many" or "bigger than the other one"—there was a spike of electrical activity in the same nerve-cell population of the intraparietal sulcus that was activated when the patient was doing calculations under experimental conditions. [14]
Numerical magnitude processing refers to the cognitive ability to understand and compare numbers. This assists in tasks that involve estimation, mathematical processes, and decision-making. The intraparietal sulci are made up of two parts, left and right. The right intraparietal sulcus is involved more in non-symbolic numerical tasks, which involve estimation and spatial reasoning. The left intraparietal sulcus focuses on symbolic numerical tasks, which involves understanding symbols and mathematical operations. Studies have demonstrated that the right intraparietal sulcus shows more activity during magnitude estimation and length comparison tasks. Researchers discovered that disrupted activity in the right intraparietal lobe using rTMS, (repetitive transcranial magnetic stimulation) resulted in participants having difficulties with performance in both the magnitude and length tasks. Studies have shown that children who show a larger change in brain activity in the left intraparietal sulcus tend to perform better at arithmetic tasks. This suggests that the left intraparietal sulcus plays an important role when it comes to numerical processing and mathematics. [15] [16]
Damage to the intraparietal sulcus (IPS) can make it difficult to represent and manipulate numerical quantities. Research completed by Ganor-Stern et al. investigated the involvement of the IPS in estimating the results of multi-digit multiplication problems. [17] In a computation estimation task, they compared a 24-year-old female (JD) with damage in the left IPS to an age-matched control group. During this estimation task, participants were presented with multi-digit multiplication problems accompanied by reference numbers. They were asked to estimate whether the exact answer to each problem was larger or smaller than the reference number. JD did not show the typical patterns of distance and size effects compared to control groups during this task. JD also had an atypical strategy in which she only used the approximated calculation strategy that involved rounding and calculating procedures. Most control participants used both a calculation strategy and the sense of magnitude strategy, which relies on an intuitive approximated magnitude representation of the results. The findings of this study suggest that damage to the IPS impaired JD’s representations of magnitude, which play an important role in everyday estimation tasks.
The parietal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The parietal lobe is positioned above the temporal lobe and behind the frontal lobe and central sulcus.
In neuroanatomy, the precuneus is the portion of the superior parietal lobule on the medial surface of each brain hemisphere. It is located in front of the cuneus. The precuneus is bounded in front by the marginal branch of the cingulate sulcus, at the rear by the parieto-occipital sulcus, and underneath by the subparietal sulcus. It is involved with episodic memory, visuospatial processing, reflections upon self, and aspects of consciousness.
The frontal lobe is the largest of the four major lobes of the brain in mammals, and is located at the front of each cerebral hemisphere. It is parted from the parietal lobe by a groove between tissues called the central sulcus and from the temporal lobe by a deeper groove called the lateral sulcus. The most anterior rounded part of the frontal lobe is known as the frontal pole, one of the three poles of the cerebrum.
Dyscalculia is a learning disability resulting in difficulty learning or comprehending arithmetic, such as difficulty in understanding numbers, numeracy, learning how to manipulate numbers, performing mathematical calculations, and learning facts in mathematics. It is sometimes colloquially referred to as "math dyslexia", though this analogy can be misleading as they are distinct syndromes.
The angular gyrus is a region of the brain lying mainly in the posteroinferior region of the parietal lobe, occupying the posterior part of the inferior parietal lobule. It represents the Brodmann area 39.
The lobes of the brain are the four major identifiable regions of the human cerebral cortex, and they comprise the surface of each hemisphere of the cerebrum. The two hemispheres are roughly symmetrical in structure, and are connected by the corpus callosum. Some sources include the insula and limbic lobe but the limbic lobe incorporates parts of the other lobes. The lobes are large areas that are anatomically distinguishable, and are also functionally distinct. Each lobe of the brain has numerous ridges, or gyri, and furrows, sulci that constitute further subzones of the cortex. The expression "lobes of the brain" usually refers only to those of the cerebrum, not to the distinct areas of the cerebellum.
The frontal eye fields (FEF) are a region located in the frontal cortex, more specifically in Brodmann area 8 or BA8, of the primate brain. In humans, it can be more accurately said to lie in a region around the intersection of the middle frontal gyrus with the precentral gyrus, consisting of a frontal and parietal portion. The FEF is responsible for saccadic eye movements for the purpose of visual field perception and awareness, as well as for voluntary eye movement. The FEF communicates with extraocular muscles indirectly via the paramedian pontine reticular formation. Destruction of the FEF causes deviation of the eyes to the ipsilateral side.
The superior parietal lobule is bounded in front by the upper part of the postcentral sulcus, but is usually connected with the postcentral gyrus above the end of the sulcus. The superior parietal lobule contains Brodmann's areas 5 and 7.
In neuroanatomy, a sulcus is a shallow depression or groove in the cerebral cortex. One or more sulci surround a gyrus, a ridge on the surface of the cortex, creating the characteristic folded appearance of the brain in humans and most other mammals. The larger sulci are also called fissures. The cortex develops in the fetal stage of corticogenesis, preceding the cortical folding stage known as gyrification. The large fissures and main sulci are the first to develop.
Attentional shift occurs when directing attention to a point increases the efficiency of processing of that point and includes inhibition to decrease attentional resources to unwanted or irrelevant inputs. Shifting of attention is needed to allocate attentional resources to more efficiently process information from a stimulus. Research has shown that when an object or area is attended, processing operates more efficiently. Task switching costs occur when performance on a task suffers due to the increased effort added in shifting attention. There are competing theories that attempt to explain why and how attention is shifted as well as how attention is moved through space in attentional control.
Numerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics. This discipline, although it may interact with questions in the philosophy of mathematics, is primarily concerned with empirical questions.
Stanislas Dehaene is a French author and cognitive neuroscientist whose research centers on a number of topics, including numerical cognition, the neural basis of reading and the neural correlates of consciousness. As of 2017, he is a professor at the Collège de France and, since 1989, the director of INSERM Unit 562, "Cognitive Neuroimaging".
The posterior parietal cortex plays an important role in planned movements, spatial reasoning, and attention.
The dorsal attention network (DAN), also known anatomically as the dorsal frontoparietal network (D-FPN), is a large-scale brain network of the human brain that is primarily composed of the intraparietal sulcus (IPS) and frontal eye fields (FEF). It is named and most known for its role in voluntary orienting of visuospatial attention.
The neuroanatomy of memory encompasses a wide variety of anatomical structures in the brain.
The effects of sleep deprivation on cognitive performance are a broad range of impairments resulting from inadequate sleep, impacting attention, executive function and memory. An estimated 20% of adults or more have some form of sleep deprivation. It may come with insomnia or major depressive disorder, or indicate other mental disorders. The consequences can negatively affect the health, cognition, energy level and mood of a person and anyone around. It increases the risk of human error, especially with technology.
The approximate number system (ANS) is a cognitive system that supports the estimation of the magnitude of a group without relying on language or symbols. The ANS is credited with the non-symbolic representation of all numbers greater than four, with lesser values being carried out by the parallel individuation system, or object tracking system. Beginning in early infancy, the ANS allows an individual to detect differences in magnitude between groups. The precision of the ANS improves throughout childhood development and reaches a final adult level of approximately 15% accuracy, meaning an adult could distinguish 100 items versus 115 items without counting. The ANS plays a crucial role in development of other numerical abilities, such as the concept of exact number and simple arithmetic. The precision level of a child's ANS has been shown to predict subsequent mathematical achievement in school. The ANS has been linked to the intraparietal sulcus of the brain.
The numerical Stroop effect, a concept rooted in cognitive psychology, refers to the interference that occurs when individuals are asked to compare numerical values or physical sizes of digits presented together. The effect arises when there is a mismatch—or incongruity—between the numerical value and the physical size of the digits. For example, comparing a physically larger "3" and a smaller "5" can result in slower reaction times, as the brain encounters conflicting information between size and value. Conversely, response times are faster when the size and value align, such as a large "5" and a small "3".
Avishai Henik is an Israeli neurocognitive psychologist who works at Ben-Gurion University of the Negev (BGU). Henik studies voluntary and automatic (non-voluntary/reflexive) processes involved in cognitive operations. He characterizes automatic processes, and clarifies their importance, the relationship between automatic and voluntary processes, and their neural underpinnings. Most of his work involves research with human participants and in recent years, he has been working with Archer fish to examine evolutionary aspects of various cognitive functions.
Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.