Dorsal attention network

Last updated
Interaction between dorsal and ventral attention networks enables dynamic control of attention in relation to top-down goals and bottom-up sensory stimulation. Dorsal and ventral attention systems.jpg
Interaction between dorsal and ventral attention networks enables dynamic control of attention in relation to top-down goals and bottom-up sensory stimulation.

The dorsal attention network (DAN), also known anatomically as the dorsal frontoparietal network (D-FPN), is a large-scale brain network of the human brain that is primarily composed of the intraparietal sulcus (IPS) and frontal eye fields (FEF). [2] [3] It is named and most known for its role in voluntary orienting of visuospatial attention. [4] [5]

Contents

As the IPS and FEF were noticed to be activated during many attention-demanding tasks, this network was sometimes referred to as the task-positive network to contrast it against the task-negative network, or default mode network. [6] However, this dichotomy is now considered misleading, because the default mode network can be active in certain cognitive tasks. [7]

Anatomy

The core regions of the DAN are the IPS and FEF of each hemisphere. [8] Other regions of the network may include the middle temporal region (MT+), [6] superior parietal lobule (SPL), supplementary eye field (SEF), [9] and ventral premotor cortex. [10]

More recent works indicate that the cerebellum may participate in this network as well. [11] [12] Less studied regions include the right dorsolateral prefrontal cortex and superior colliculus. [10]

Function

The DAN is most prominently involved in goal-directed, voluntary control of visuospatial attention. [4] [5] Corbetta et al., who first defined and named the DAN in the early-to-mid 2000s, [5] [13] suggest that the network is involved in general top-down selection of stimuli and responses, including other modalities (e.g. auditory, tactile). [14] However, evidence that the full DAN is involved in auditory top-down attention has been questioned, as tests that make said claims incorporated both auditory and visual stimuli. [15]

The dorsal attention network dynamically interacts with the ventral attention network (or salience network) according to task demands. [1] The inferior frontal junction configures this interaction between the two networks during task switches or attention shifts. [16]

Clinical significance

Reduced connectivity within the dorsal and ventral attention networks has been linked to higher levels of attention deficit hyperactivity disorder symptoms. [17] [18] Similarly, reduced connectivity between the DAN and the frontoparietal network is associated with major depressive disorder. [19] On the other hand, overactivation of the DAN has been observed in patients with schizophrenia. [20]

Nomenclature

There are several variations of this network's name in neuroscience literature, such as the dorsal attention system, [1] dorsal frontoparietal attention network, [9] and frontoparietal attention network. [21] Until the discovery of other networks, such as the frontoparietal control network, the term task-positive network referred to the DAN. [22] The term task-positive networks is still sometimes used to refer to all non-default-mode networks. [23]

In 2019, Uddin et al. proposed that dorsal frontoparietal network (D-FPN) be used as a standard anatomical name for this network. [10]

References

  1. 1 2 3 Vossel, S; Geng, JJ; Fink, GR (April 2014). "Dorsal and ventral attention systems: distinct neural circuits but collaborative roles". The Neuroscientist. 20 (2): 150–9. doi:10.1177/1073858413494269. PMC   4107817 . PMID   23835449.
  2. Fox, M.D.; Corbetta, M.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E. (2006). "Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems". PNAS. 103 (26): 10046–10051. Bibcode:2006PNAS..10310046F. doi: 10.1073/pnas.0604187103 . PMC   1480402 . PMID   16788060.
  3. Farrant, Kristafor; Uddin, Lucina Q. (2015-02-12). "Asymmetric development of dorsal and ventral attention networks in the human brain". Developmental Cognitive Neuroscience. 12: 165–174. doi:10.1016/j.dcn.2015.02.001. ISSN   1878-9293. PMC   4396619 . PMID   25797238.
  4. 1 2 Kincade, J. M.; Abrams, R. A.; Astafiev, S. V.; Shulman, G. I.; Corbetta, M. (2005). "An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention". Journal of Neuroscience. 25 (18): 4593–4604. doi:10.1523/jneurosci.0236-05.2005. PMC   6725019 . PMID   15872107.
  5. 1 2 3 Corbetta, M; Shulman, GL (March 2002). "Control of goal-directed and stimulus-driven attention in the brain". Nature Reviews. Neuroscience. 3 (3): 201–15. doi:10.1038/nrn755. PMID   11994752. S2CID   1540678.
  6. 1 2 Fox, M. D.; Snyder, A. Z.; Vincent, J. L.; Corbetta, M.; Van Essen, D. C.; Raichle, M. E. (2005). "From The Cover: The human brain is intrinsically organized into dynamic, anticorrelated functional networks". Proceedings of the National Academy of Sciences. 102 (27): 9673–9678. doi: 10.1073/pnas.0504136102 . ISSN   0027-8424. PMC   1157105 . PMID   15976020.
  7. Spreng, R. Nathan (2012-01-01). "The fallacy of a "task-negative" network". Frontiers in Psychology. 3: 145. doi: 10.3389/fpsyg.2012.00145 . ISSN   1664-1078. PMC   3349953 . PMID   22593750.
  8. Astafiev, S. V.; Shulman, G. I.; Stanley, C. M.; Snyder, A. Z.; Van Essen, D. C.; Corbetta, M. (2003). "Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing". Journal of Neuroscience. 23 (11): 4689–4699. doi:10.1523/JNEUROSCI.23-11-04689.2003. PMC   6740811 . PMID   12805308.
  9. 1 2 Szczepanski, SM; Pinsk, MA; Douglas, MM; Kastner, S; Saalmann, YB (2013-09-24). "Functional and structural architecture of the human dorsal frontoparietal attention network". Proceedings of the National Academy of Sciences of the United States of America. 110 (39): 15806–11. Bibcode:2013PNAS..11015806S. doi: 10.1073/pnas.1313903110 . PMC   3785784 . PMID   24019489.
  10. 1 2 3 Uddin, Lucina Q.; Yeo, B. T. Thomas; Spreng, R. Nathan (2019-11-01). "Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks". Brain Topography. 32 (6): 926–942. doi:10.1007/s10548-019-00744-6. ISSN   1573-6792. PMC   7325607 . PMID   31707621.
  11. Somers, David C.; Halko, Mark A.; Levin, Emily J.; Osher, David E.; Tobyne, Sean M.; Brissenden, James A. (2018-11-05). "Topographic Cortico-cerebellar Networks Revealed by Visual Attention and Working Memory". Current Biology. 28 (21): 3364–3372.e5. doi:10.1016/j.cub.2018.08.059. ISSN   0960-9822. PMC   6257946 . PMID   30344119.
  12. Somers, David C.; Halko, Mark A.; Osher, David E.; Levin, Emily J.; Brissenden, James A. (2016-06-01). "Functional Evidence for a Cerebellar Node of the Dorsal Attention Network". Journal of Neuroscience. 36 (22): 6083–6096. doi:10.1523/JNEUROSCI.0344-16.2016. ISSN   0270-6474. PMC   4887569 . PMID   27251628.
  13. Corbetta, Maurizio; Kincade, Michelle J.; Lewis, Chris; Snyder, Abraham Z.; Sapir, Ayelet (November 2005). "Neural basis and recovery of spatial attention deficits in spatial neglect" . Nature Neuroscience. 8 (11): 1603–1610. doi:10.1038/nn1574. ISSN   1546-1726. PMID   16234807. S2CID   18224715.
  14. Corbetta, M; Patel, G; Shulman, GL (2008-05-08). "The reorienting system of the human brain: from environment to theory of mind". Neuron. 58 (3): 306–24. doi:10.1016/j.neuron.2008.04.017. PMC   2441869 . PMID   18466742.
  15. Braga, RM; Wilson, LR; Sharp, DJ; Wise, RJ; Leech, R (2013-07-01). "Separable networks for top-down attention to auditory non-spatial and visuospatial modalities". NeuroImage. 74: 77–86. doi:10.1016/j.neuroimage.2013.02.023. PMC   3898942 . PMID   23435206.
  16. Tamber-Rosenau, BJ; Asplund, CL; Marois, R (2018-11-01). "Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control". Journal of Neurophysiology. 120 (5): 2498–2512. doi:10.1152/jn.00506.2018. PMC   6295539 . PMID   30156458.
  17. Castellanos, FX; Aoki, Y (May 2016). "Intrinsic Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Science in Development". Biological Psychiatry. Cognitive Neuroscience and Neuroimaging. 1 (3): 253–261. doi:10.1016/j.bpsc.2016.03.004. PMC   5047296 . PMID   27713929.
  18. McCarthy, H; Skokauskas, N; Mulligan, A; Donohoe, G; Mullins, D; Kelly, J; Johnson, K; Fagan, A; Gill, M; Meaney, J; Frodl, T (December 2013). "Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood". JAMA Psychiatry. 70 (12): 1329–37. doi:10.1001/jamapsychiatry.2013.2174. PMID   24132732.
  19. Kaiser, RH; Andrews-Hanna, JR; Wager, TD; Pizzagalli, DA (June 2015). "Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity". JAMA Psychiatry. 72 (6): 603–11. doi:10.1001/jamapsychiatry.2015.0071. PMC   4456260 . PMID   25785575.
  20. Jimenez, AM; Lee, J; Wynn, JK; Cohen, MS; Engel, SA; Glahn, DC; Nuechterlein, KH; Reavis, EA; Green, MF (2016). "Abnormal Ventral and Dorsal Attention Network Activity during Single and Dual Target Detection in Schizophrenia". Frontiers in Psychology. 7: 323. doi: 10.3389/fpsyg.2016.00323 . PMC   4781842 . PMID   27014135.
  21. Ptak, R (October 2012). "The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment". The Neuroscientist. 18 (5): 502–15. doi:10.1177/1073858411409051. PMID   21636849. S2CID   19702611.
  22. Vincent, JL; Kahn, I; Snyder, AZ; Raichle, ME; Buckner, RL (December 2008). "Evidence for a frontoparietal control system revealed by intrinsic functional connectivity". Journal of Neurophysiology. 100 (6): 3328–42. doi:10.1152/jn.90355.2008. PMC   2604839 . PMID   18799601.
  23. Mills, BD; Miranda-Dominguez, O; Mills, KL; Earl, E; Cordova, M; Painter, J; Karalunas, SL; Nigg, JT; Fair, DA (2018). "ADHD and attentional control: Impaired segregation of task positive and task negative brain networks". Network Neuroscience (Cambridge, Mass.). 2 (2): 200–217. doi:10.1162/netn_a_00034. PMC   6130439 . PMID   30215033.