Frontoparietal network

Last updated

The salience network is theorised to mediate switching between the default mode network and frontoparietal network (central executive network). Fnbeh-08-00171-g002.jpg
The salience network is theorised to mediate switching between the default mode network and frontoparietal network (central executive network).

The frontoparietal network (FPN), generally also known as the central executive network (CEN) or, more specifically, the lateral frontoparietal network (L-FPN) (see Nomenclature), is a large-scale brain network primarily composed of the dorsolateral prefrontal cortex and posterior parietal cortex, [4] around the intraparietal sulcus. [5] It is involved in sustained attention, complex problem-solving and working memory. [1]

Contents

The FPN is one of three networks in the so-called triple-network model, along with the salience network and the default mode network (DMN). [6] The salience network facilitates switching between the FPN and DMN. [1] [2]

Anatomy

The FPN is primarily composed of the rostral lateral and dorsolateral prefrontal cortex (especially the middle frontal gyrus) and the anterior inferior parietal lobule. Additional regions include the middle cingulate gyrus and potentially the dorsal precuneus, posterior inferior temporal lobe, dorsomedial thalamus and the head of the caudate nucleus. [7]

Function

The FPN is involved in executive function and goal-oriented, cognitively demanding tasks. [7] It is crucial for rule-based problem solving, actively maintaining and manipulating information in working memory and making decisions in the context of goal-directed behaviour. [1] Efficient processing in the frontoparietal network during cognitive control tasks enables the fulfillment of cognitive demands. [8] Based on current cognitive demands, the FPN flexibly divides into two subsystems that connect to other networks: the default mode network for introspective processes and the dorsal attention network for perceptual attention. [9]

Clinical significance

Disruption of the nodes of the FPN has been found in virtually every psychiatric and neurological disorder, from autism, schizophrenia and depression to frontotemporal dementia and Alzheimer's disease. [1]

Nomenclature

The term central executive network (CEN) is generally equivalent to the frontoparietal network in literature, [10] [11] [12] distinguishing it from the dorsal attention network (DAN), with which it has several similarities, [5] though sometimes it has been used to include the DAN. [12]

The FPN has fewer similarities with the salience network (which has also been equated with the cingulo-opercular network or ventral attention network [7] ). Regardless, it has sometimes been grouped together with either the DAN or the salience network (usually the latter [13] ) under the name executive control network (ECN). [5] The term frontoparietal control network (FPCN) has also been used, generally also for a grouping of the FPN and the salience network. [5] [13]

Other names for the FPN have included the multiple-demand system, extrinsic mode network, domain-general system and cognitive control network. [7]

In 2019, Uddin et al. proposed that lateral frontoparietal network (L-FPN) be used as the standard name for this network. [7]

See also

References

  1. 1 2 3 4 5 Menon, Vinod (1 October 2011). "Large-scale brain networks and psychopathology: a unifying triple network model" . Trends in Cognitive Sciences. 15 (10): 483–506. doi:10.1016/j.tics.2011.08.003. ISSN   1364-6613. PMID   21908230. S2CID   26653572.
  2. 1 2 Sridharan, D.; Levitin, D. J.; Menon, V. (22 August 2008). "A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks". Proceedings of the National Academy of Sciences. 105 (34): 12569–12574. Bibcode:2008PNAS..10512569S. doi: 10.1073/pnas.0800005105 . PMC   2527952 . PMID   18723676.
  3. Nekovarova, Tereza; Fajnerova, Iveta; Horacek, Jiri; Spaniel, Filip (30 May 2014). "Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory". Frontiers in Behavioral Neuroscience. 8: 171. doi: 10.3389/fnbeh.2014.00171 . PMC   4038855 . PMID   24910597.
  4. Gong, Diankun; He, Hui; Ma, Weiyi; Liu, Dongbo; Huang, Mengting; Dong, Li; Gong, Jinnan; Li, Jianfu; Luo, Cheng (14 January 2016). "Functional Integration between Salience and Central Executive Networks: A Role for Action Video Game Experience". Neural Plasticity. 2016: 1–9. doi: 10.1155/2016/9803165 . PMC   4739029 . PMID   26885408.
  5. 1 2 3 4 Gratton, Caterina; Sun, Haoxin; Petersen, Steven E. (2018). "Control networks and hubs". Psychophysiology. 55 (3): e13032. doi:10.1111/psyp.13032. ISSN   1469-8986. PMC   5811327 . PMID   29193146.
  6. van Oort, J.; Tendolkar, I.; Hermans, E. J.; Mulders, P. C.; Beckmann, C. F.; Schene, A. H.; Fernández, G.; van Eijndhoven, P. F. (1 December 2017). "How the brain connects in response to acute stress: A review at the human brain systems level" . Neuroscience & Biobehavioral Reviews. 83: 281–297. doi:10.1016/j.neubiorev.2017.10.015. hdl: 2066/181920 . ISSN   0149-7634. PMID   29074385. S2CID   35066027.
  7. 1 2 3 4 5 Uddin, Lucina Q.; Yeo, B. T. Thomas; Spreng, R. Nathan (1 November 2019). "Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks". Brain Topography. 32 (6): 926–942. doi:10.1007/s10548-019-00744-6. ISSN   1573-6792. PMC   7325607 . PMID   31707621.
  8. Saberi M, Rieck JR, Golafshan S, Grady CL, Misic B, Dunkley BT, Khatibi A (2024). "The brain selectively allocates energy to functional brain networks under cognitive control". Scientific Reports. 14 (1): 32032. Bibcode:2024NatSR..1432032S. doi:10.1038/s41598-024-83696-7. PMC   11686059 . PMID   39738735.
  9. Dixon, ML; De La Vega, A; Mills, C; Andrews-Hanna, J; Spreng, RN; Cole, MW; Christoff, K (13 February 2018). "Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks". Proceedings of the National Academy of Sciences of the United States of America. 115 (7): E1598 –E1607. doi: 10.1073/pnas.1715766115 . PMC   5816169 . PMID   29382744.
  10. Philippi, Carissa L.; Pujara, Maia S.; Motzkin, Julian C.; Newman, Joseph; Kiehl, Kent A.; Koenigs, Michael (15 April 2015). "Altered Resting-State Functional Connectivity in Cortical Networks in Psychopathy". Journal of Neuroscience. 35 (15): 6068–6078. doi:10.1523/JNEUROSCI.5010-14.2015. ISSN   0270-6474. PMC   4397604 . PMID   25878280.
  11. Brodal, Per (2016). The Central Nervous System. Oxford University Press. p. 578. ISBN   978-0-19-022895-8.
  12. 1 2 Littow, Harri; Huossa, Ville; Karjalainen, Sami; Jääskeläinen, Erika; Haapea, Marianne; Miettunen, Jouko; Tervonen, Osmo; Isohanni, Matti; Nikkinen, Juha; Veijola, Juha; Murray, Graham (2015). "Aberrant Functional Connectivity in the Default Mode and Central Executive Networks in Subjects with Schizophrenia – A Whole-Brain Resting-State ICA Study". Frontiers in Psychiatry. 6: 26. doi: 10.3389/fpsyt.2015.00026 . ISSN   1664-0640. PMC   4341512 . PMID   25767449. S2CID   14879568.
  13. 1 2 Spreng, R. Nathan; Sepulcre, Jorge; Turner, Gary R.; Stevens, W. Dale; Schacter, Daniel L. (January 2013). "Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain". Journal of Cognitive Neuroscience. 25 (1): 74–86. doi:10.1162/jocn_a_00281. ISSN   0898-929X. PMC   3816715 . PMID   22905821.