Dynamic causal modeling

Last updated

Dynamic causal modeling (DCM) is a framework for specifying models, fitting them to data and comparing their evidence using Bayesian model comparison. It uses nonlinear state-space models in continuous time, specified using stochastic or ordinary differential equations. DCM was initially developed for testing hypotheses about neural dynamics. [1] In this setting, differential equations describe the interaction of neural populations, which directly or indirectly give rise to functional neuroimaging data e.g., functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) or electroencephalography (EEG). Parameters in these models quantify the directed influences or effective connectivity among neuronal populations, which are estimated from the data using Bayesian statistical methods.

Contents

Procedure

DCM is typically used to estimate the coupling among brain regions and the changes in coupling due to experimental changes (e.g., time or context). A model of interacting neural populations is specified, with a level of biological detail dependent on the hypotheses and available data. This is coupled with a forward model describing how neural activity gives rise to measured responses. Estimating the generative model identifies the parameters (e.g. connection strengths) from the observed data. Bayesian model comparison is used to compare models based on their evidence, which can then be characterised in terms of parameters.

DCM studies typically involve the following stages: [2]

  1. Experimental design. Specific hypotheses are formulated and an experiment is conducted.
  2. Data preparation. The acquired data are pre-processed (e.g., to select relevant data features and remove confounds).
  3. Model specification. One or more forward models (DCMs) are specified for each dataset.
  4. Model estimation. The model(s) are fitted to the data to determine their evidence and parameters.
  5. Model comparison. The evidence for each model is used for Bayesian Model Comparison (at the single-subject level or at the group level) to select the best model(s). Bayesian model averaging (BMA) is used to compute a weighted average of parameter estimates over different models.

The key stages are briefly reviewed below.

Experimental design

Functional neuroimaging experiments are typically either task-based or examine brain activity at rest (resting state). In task-based experiments, brain responses are evoked by known deterministic inputs (experimentally controlled stimuli). These experimental variables can change neural activity through direct influences on specific brain regions, such as evoked potentials in the early visual cortex, or via a modulation of coupling among neural populations; for example, the influence of attention. These two types of input - driving and modulatory - are parameterized separately in DCM. [1] To enable efficient estimation of driving and modulatory effects, a 2x2 factorial experimental design is often used - with one factor serving as the driving input and the other as the modulatory input. [2]

Resting state experiments have no experimental manipulations within the period of the neuroimaging recording. Instead, hypotheses are tested about the coupling of endogenous fluctuations in neuronal activity, or in the differences in connectivity between sessions or subjects. The DCM framework includes models and procedures for analysing resting state data, described in the next section.

Model specification

All models in DCM have the following basic form:

The first equality describes the change in neural activity with respect to time (i.e. ), which cannot be directly observed using non-invasive functional imaging modalities. The evolution of neural activity over time is controlled by a neural function with parameters and experimental inputs . The neural activity in turn causes the timeseries (second equality), which are generated via an observation function with parameters . Additive observation noise completes the observation model. Usually, the neural parameters are of key interest, which for example represent connection strengths that may change under different experimental conditions.

Specifying a DCM requires selecting a neural model and observation model and setting appropriate priors over the parameters; e.g. selecting which connections should be switched on or off.

Functional MRI

The neural model in DCM for fMRI. z1 and z2 are the mean levels of activity in each region. Parameters A are the effective connectivity, B is the modulation of connectivity by a specific experimental condition and C is the driving input. DCM for fMRI.svg
The neural model in DCM for fMRI. z1 and z2 are the mean levels of activity in each region. Parameters A are the effective connectivity, B is the modulation of connectivity by a specific experimental condition and C is the driving input.

The neural model in DCM for fMRI is a Taylor approximation that captures the gross causal influences between brain regions and their change due to experimental inputs (see picture). This is coupled with a detailed biophysical model of the generation of the blood oxygen level dependent (BOLD) response and the MRI signal, [1] based on the Balloon model of Buxton et al., [3] which was supplemented with a model of neurovascular coupling. [4] [5] Additions to the neural model have included interactions between excitatory and inhibitory neural populations [6] and non-linear influences of neural populations on the coupling between other populations. [7]

DCM for resting state studies was first introduced in Stochastic DCM, [8] which estimates both neural fluctuations and connectivity parameters in the time domain, using Generalized Filtering. A more efficient scheme for resting state data was subsequently introduced which operates in the frequency domain, called DCM for Cross-Spectral Density (CSD). [9] [10] Both of these can be applied to large-scale brain networks by constraining the connectivity parameters based on the functional connectivity. [11] [12] Another recent development for resting state analysis is Regression DCM [13] implemented in the Tapas software collection (see Software implementations). Regression DCM operates in the frequency domain, but linearizes the model under certain simplifications, such as having a fixed (canonical) haemodynamic response function. The enables rapid estimation of large-scale brain networks.

Models of the cortical column used in EEG/MEG/LFP analysis. Self-connections on each population are present but not shown for clarity. Left: DCM for ERP. Right: Canonical Microcircuit (CMC). 1=spiny stellate cells (layer IV), 2=inhibitory interneurons, 3=(deep) pyramidal cells and 4=superficial pyramidal cells. DCM for ERP and CMC.svg
Models of the cortical column used in EEG/MEG/LFP analysis. Self-connections on each population are present but not shown for clarity. Left: DCM for ERP. Right: Canonical Microcircuit (CMC). 1=spiny stellate cells (layer IV), 2=inhibitory interneurons, 3=(deep) pyramidal cells and 4=superficial pyramidal cells.

EEG / MEG

DCM for EEG and MEG data use more biologically detailed neural models than fMRI, due to the higher temporal resolution of these measurement techniques. These can be classed into physiological models, which recapitulate neural circuitry, and phenomenological models, which focus on reproducing particular data features. The physiological models can be further subdivided into two classes. Conductance-based models derive from the equivalent circuit representation of the cell membrane developed by Hodgkin and Huxley in the 1950s. [14] Convolution models were introduced by Wilson & Cowan [15] and Freeman [16] in the 1970s and involve a convolution of pre-synaptic input by a synaptic kernel function. Some of the specific models used in DCM are as follows:

Model estimation

Model inversion or estimation is implemented in DCM using variational Bayes under the Laplace assumption. [29] This provides two useful quantities: the log marginal likelihood or model evidence is the probability of observing of the data under a given model. Generally, this cannot be calculated explicitly and is approximated by a quantity called the negative variational free energy , referred to in machine learning as the Evidence Lower Bound (ELBO). Hypotheses are tested by comparing the evidence for different models based on their free energy, a procedure called Bayesian model comparison.

Model estimation also provides estimates of the parameters , for example connection strengths, which maximise the free energy. Where models differ only in their priors, Bayesian Model Reduction can be used to derive the evidence and parameters of nested or reduced models analytically and efficiently.

Model comparison

Neuroimaging studies typically investigate effects that are conserved at the group level, or which differ between subjects. There are two predominant approaches for group-level analysis: random effects Bayesian Model Selection (BMS) [30] and Parametric Empirical Bayes (PEB). [31] Random Effects BMS posits that subjects differ in terms of which model generated their data - e.g. drawing a random subject from the population, there might be a 25% chance that their brain is structured like model 1 and a 75% chance that it is structured like model 2. The analysis pipeline for the BMS approach procedure follows a series of steps:

  1. Specify and estimate multiple DCMs per subject, where each DCM (or set of DCMs) embodies a hypothesis.
  2. Perform Random Effects BMS to estimate the proportion of subjects whose data were generated by each model
  3. Calculate the average connectivity parameters across models using Bayesian Model Averaging. This average is weighted by the posterior probability for each model, meaning that models with greater probability contribute more to the average than models with lower probability.

Alternatively, Parametric Empirical Bayes (PEB) [31] can be used, which specifies a hierarchical model over parameters (e.g., connection strengths). It eschews the notion of different models at the level of individual subjects, and assumes that people differ in the (parametric) strength of connections. The PEB approach models distinct sources of variability in connection strengths across subjects using fixed effects and between-subject variability (random effects). The PEB procedure is as follows:

  1. Specify a single 'full' DCM per subject, which contains all the parameters of interest.
  2. Specify a Bayesian General Linear Model (GLM) to model the parameters (the full posterior density) from all subjects at the group level.
  3. Test hypotheses by comparing the full group-level model to reduced group-level models where certain combinations of connections have been switched off.

Validation

Developments in DCM have been validated using different approaches:

Limitations / drawbacks

DCM is a hypothesis-driven approach for investigating the interactions among pre-defined regions of interest. It is not ideally suited for exploratory analyses. [2] Although methods have been implemented for automatically searching over reduced models (Bayesian Model Reduction) and for modelling large-scale brain networks, [12] these methods require an explicit specification of model space. In neuroimaging, approaches such as psychophysiological interaction (PPI) analysis may be more appropriate for exploratory use; especially for discovering key nodes for subsequent DCM analysis.

The variational Bayesian methods used for model estimation in DCM are based on the Laplace assumption, which treats the posterior over parameters as Gaussian. This approximation can fail in the context of highly non-linear models, where local minima may preclude the free energy from serving as a tight bound on log model evidence. Sampling approaches provide the gold standard; however, they are time-consuming and have typically been used to validate the variational approximations in DCM. [40]

Software implementations

DCM is implemented in the Statistical Parametric Mapping software package, which serves as the canonical or reference implementation (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). It has been re-implemented and developed in the Tapas software collection (https://www.tnu.ethz.ch/en/software/tapas.html Archived 2019-02-03 at the Wayback Machine ) and the VBA toolbox (https://mbb-team.github.io/VBA-toolbox/).

References

  1. 1 2 3 4 Friston, K.J.; Harrison, L.; Penny, W. (August 2003). "Dynamic causal modelling". NeuroImage. 19 (4): 1273–1302. doi:10.1016/s1053-8119(03)00202-7. ISSN   1053-8119. PMID   12948688. S2CID   2176588.
  2. 1 2 3 Stephan, K.E.; Penny, W.D.; Moran, R.J.; den Ouden, H.E.M.; Daunizeau, J.; Friston, K.J. (February 2010). "Ten simple rules for dynamic causal modeling". NeuroImage. 49 (4): 3099–3109. doi:10.1016/j.neuroimage.2009.11.015. ISSN   1053-8119. PMC   2825373 . PMID   19914382.
  3. Buxton, Richard B.; Wong, Eric C.; Frank, Lawrence R. (June 1998). "Dynamics of blood flow and oxygenation changes during brain activation: The balloon model". Magnetic Resonance in Medicine. 39 (6): 855–864. doi:10.1002/mrm.1910390602. ISSN   0740-3194. PMID   9621908. S2CID   2002497.
  4. Friston, K.J.; Mechelli, A.; Turner, R.; Price, C.J. (October 2000). "Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics". NeuroImage. 12 (4): 466–477. doi:10.1006/nimg.2000.0630. ISSN   1053-8119. PMID   10988040. S2CID   961661.
  5. Stephan, Klaas Enno; Weiskopf, Nikolaus; Drysdale, Peter M.; Robinson, Peter A.; Friston, Karl J. (November 2007). "Comparing hemodynamic models with DCM". NeuroImage. 38 (3): 387–401. doi:10.1016/j.neuroimage.2007.07.040. ISSN   1053-8119. PMC   2636182 . PMID   17884583.
  6. Marreiros, A.C.; Kiebel, S.J.; Friston, K.J. (January 2008). "Dynamic causal modelling for fMRI: A two-state model". NeuroImage. 39 (1): 269–278. CiteSeerX   10.1.1.160.1281 . doi:10.1016/j.neuroimage.2007.08.019. ISSN   1053-8119. PMID   17936017. S2CID   9731930.
  7. 1 2 Stephan, Klaas Enno; Kasper, Lars; Harrison, Lee M.; Daunizeau, Jean; den Ouden, Hanneke E.M.; Breakspear, Michael; Friston, Karl J. (August 2008). "Nonlinear dynamic causal models for fMRI". NeuroImage. 42 (2): 649–662. doi:10.1016/j.neuroimage.2008.04.262. ISSN   1053-8119. PMC   2636907 . PMID   18565765.
  8. Li, Baojuan; Daunizeau, Jean; Stephan, Klaas E; Penny, Will; Hu, Dewen; Friston, Karl (2011-09-15). "Generalised filtering and stochastic DCM for fMRI" (PDF). NeuroImage. 58 (2): 442–457. doi:10.1016/j.neuroimage.2011.01.085. ISSN   1053-8119. PMID   21310247. S2CID   13956458.
  9. Friston, Karl J.; Kahan, Joshua; Biswal, Bharat; Razi, Adeel (July 2014). "A DCM for resting state fMRI". NeuroImage. 94 (100): 396–407. doi:10.1016/j.neuroimage.2013.12.009. ISSN   1053-8119. PMC   4073651 . PMID   24345387.
  10. Razi, Adeel; Kahan, Joshua; Rees, Geraint; Friston, Karl J. (February 2015). "Construct validation of a DCM for resting state fMRI". NeuroImage. 106: 1–14. doi:10.1016/j.neuroimage.2014.11.027. ISSN   1053-8119. PMC   4295921 . PMID   25463471.
  11. Seghier, Mohamed L.; Friston, Karl J. (March 2013). "Network discovery with large DCMs". NeuroImage. 68: 181–191. doi:10.1016/j.neuroimage.2012.12.005. ISSN   1053-8119. PMC   3566585 . PMID   23246991.
  12. 1 2 Razi, Adeel; Seghier, Mohamed L.; Zhou, Yuan; McColgan, Peter; Zeidman, Peter; Park, Hae-Jeong; Sporns, Olaf; Rees, Geraint; Friston, Karl J. (October 2017). "Large-scale DCMs for resting-state fMRI". Network Neuroscience. 1 (3): 222–241. doi:10.1162/netn_a_00015. ISSN   2472-1751. PMC   5796644 . PMID   29400357.
  13. Frässle, Stefan; Lomakina, Ekaterina I.; Razi, Adeel; Friston, Karl J.; Buhmann, Joachim M.; Stephan, Klaas E. (July 2017). "Regression DCM for fMRI". NeuroImage. 155: 406–421. doi: 10.1016/j.neuroimage.2017.02.090 . hdl: 20.500.11850/182456 . ISSN   1053-8119. PMID   28259780.
  14. 1 2 Hodgkin, A. L.; Huxley, A. F. (1952-04-28). "The components of membrane conductance in the giant axon ofLoligo". The Journal of Physiology. 116 (4): 473–496. doi:10.1113/jphysiol.1952.sp004718. ISSN   0022-3751. PMC   1392209 . PMID   14946714.
  15. Wilson, H. R.; Cowan, J. D. (September 1973). "A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue". Kybernetik. 13 (2): 55–80. doi:10.1007/bf00288786. ISSN   0340-1200. PMID   4767470. S2CID   292546.
  16. Freeman, Walter J (1975). Mass Action in the Nervous System. doi:10.1016/c2009-0-03145-6. ISBN   978-0-12-267150-0.
  17. David, Olivier; Friston, Karl J. (November 2003). "A neural mass model for MEG/EEG". NeuroImage. 20 (3): 1743–1755. doi:10.1016/j.neuroimage.2003.07.015. ISSN   1053-8119. PMID   14642484. S2CID   1197179.
  18. Kiebel, Stefan J.; Garrido, Marta I.; Friston, Karl J. (2009-07-31), "Dynamic Causal Modeling for Evoked Responses", Brain Signal Analysis, The MIT Press, pp. 141–170, doi:10.7551/mitpress/9780262013086.003.0006, ISBN   978-0-262-01308-6
  19. Jansen, Ben H.; Rit, Vincent G. (1995-09-01). "Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns". Biological Cybernetics. 73 (4): 357–366. doi:10.1007/s004220050191. ISSN   0340-1200. PMID   7578475.
  20. Moran, R.J.; Kiebel, S.J.; Stephan, K.E.; Reilly, R.B.; Daunizeau, J.; Friston, K.J. (September 2007). "A neural mass model of spectral responses in electrophysiology". NeuroImage. 37 (3): 706–720. doi:10.1016/j.neuroimage.2007.05.032. ISSN   1053-8119. PMC   2644418 . PMID   17632015.
  21. Bastos, Andre M.; Usrey, W. Martin; Adams, Rick A.; Mangun, George R.; Fries, Pascal; Friston, Karl J. (November 2012). "Canonical Microcircuits for Predictive Coding". Neuron. 76 (4): 695–711. doi:10.1016/j.neuron.2012.10.038. ISSN   0896-6273. PMC   3777738 . PMID   23177956.
  22. Friston, K.J.; Preller, Katrin H.; Mathys, Chris; Cagnan, Hayriye; Heinzle, Jakob; Razi, Adeel; Zeidman, Peter (February 2017). "Dynamic causal modelling revisited". NeuroImage. 199: 730–744. doi:10.1016/j.neuroimage.2017.02.045. ISSN   1053-8119. PMC   6693530 . PMID   28219774.
  23. Pinotsis, D.A.; Friston, K.J. (March 2011). "Neural fields, spectral responses and lateral connections". NeuroImage. 55 (1): 39–48. doi:10.1016/j.neuroimage.2010.11.081. ISSN   1053-8119. PMC   3049874 . PMID   21138771.
  24. Marreiros, André C.; Daunizeau, Jean; Kiebel, Stefan J.; Friston, Karl J. (August 2008). "Population dynamics: Variance and the sigmoid activation function". NeuroImage. 42 (1): 147–157. doi:10.1016/j.neuroimage.2008.04.239. ISSN   1053-8119. PMID   18547818. S2CID   13932515.
  25. Marreiros, André C.; Kiebel, Stefan J.; Daunizeau, Jean; Harrison, Lee M.; Friston, Karl J. (February 2009). "Population dynamics under the Laplace assumption". NeuroImage. 44 (3): 701–714. doi:10.1016/j.neuroimage.2008.10.008. ISSN   1053-8119. PMID   19013532. S2CID   12369912.
  26. Morris, C.; Lecar, H. (July 1981). "Voltage oscillations in the barnacle giant muscle fiber". Biophysical Journal. 35 (1): 193–213. Bibcode:1981BpJ....35..193M. doi:10.1016/s0006-3495(81)84782-0. ISSN   0006-3495. PMC   1327511 . PMID   7260316.
  27. Moran, Rosalyn J.; Stephan, Klaas E.; Dolan, Raymond J.; Friston, Karl J. (April 2011). "Consistent spectral predictors for dynamic causal models of steady-state responses". NeuroImage. 55 (4): 1694–1708. doi:10.1016/j.neuroimage.2011.01.012. ISSN   1053-8119. PMC   3093618 . PMID   21238593.
  28. Penny, W.D.; Litvak, V.; Fuentemilla, L.; Duzel, E.; Friston, K. (September 2009). "Dynamic Causal Models for phase coupling". Journal of Neuroscience Methods. 183 (1): 19–30. doi:10.1016/j.jneumeth.2009.06.029. ISSN   0165-0270. PMC   2751835 . PMID   19576931.
  29. Friston, K.; Mattout, J.; Trujillo-Barreto, N.; Ashburner, J.; Penny, W. (2007), "Variational Bayes under the Laplace approximation", Statistical Parametric Mapping, Elsevier, pp. 606–618, doi:10.1016/b978-012372560-8/50047-4, ISBN   978-0-12-372560-8
  30. Rigoux, L.; Stephan, K.E.; Friston, K.J.; Daunizeau, J. (January 2014). "Bayesian model selection for group studies — Revisited". NeuroImage. 84: 971–985. doi:10.1016/j.neuroimage.2013.08.065. ISSN   1053-8119. PMID   24018303. S2CID   1908433.
  31. 1 2 Friston, Karl J.; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E.; van Wijk, Bernadette C.M.; Ziegler, Gabriel; Zeidman, Peter (March 2016). "Bayesian model reduction and empirical Bayes for group (DCM) studies". NeuroImage. 128: 413–431. doi:10.1016/j.neuroimage.2015.11.015. ISSN   1053-8119. PMC   4767224 . PMID   26569570.
  32. Penny, W.D.; Stephan, K.E.; Mechelli, A.; Friston, K.J. (January 2004). "Modelling functional integration: a comparison of structural equation and dynamic causal models". NeuroImage. 23: S264 –S274. CiteSeerX   10.1.1.160.3141 . doi:10.1016/j.neuroimage.2004.07.041. ISSN   1053-8119. PMID   15501096. S2CID   8993497.
  33. Lee, Lucy; Friston, Karl; Horwitz, Barry (May 2006). "Large-scale neural models and dynamic causal modelling". NeuroImage. 30 (4): 1243–1254. doi:10.1016/j.neuroimage.2005.11.007. ISSN   1053-8119. PMID   16387513. S2CID   19003382.
  34. David, Olivier; Guillemain, Isabelle; Saillet, Sandrine; Reyt, Sebastien; Deransart, Colin; Segebarth, Christoph; Depaulis, Antoine (2008-12-23). "Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation". PLOS Biology. 6 (12): 2683–97. doi: 10.1371/journal.pbio.0060315 . ISSN   1545-7885. PMC   2605917 . PMID   19108604.
  35. David, Olivier; Woźniak, Agata; Minotti, Lorella; Kahane, Philippe (February 2008). "Preictal short-term plasticity induced by intracerebral 1 Hz stimulation" (PDF). NeuroImage. 39 (4): 1633–1646. doi:10.1016/j.neuroimage.2007.11.005. ISSN   1053-8119. PMID   18155929. S2CID   3415312.
  36. Reyt, Sébastien; Picq, Chloé; Sinniger, Valérie; Clarençon, Didier; Bonaz, Bruno; David, Olivier (October 2010). "Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation" (PDF). NeuroImage. 52 (4): 1456–1464. doi:10.1016/j.neuroimage.2010.05.021. ISSN   1053-8119. PMID   20472074. S2CID   1668349.
  37. Daunizeau, J.; Lemieux, L.; Vaudano, A. E.; Friston, K. J.; Stephan, K. E. (2013). "An electrophysiological validation of stochastic DCM for fMRI". Frontiers in Computational Neuroscience. 6: 103. doi: 10.3389/fncom.2012.00103 . ISSN   1662-5188. PMC   3548242 . PMID   23346055.
  38. Moran, Rosalyn J.; Symmonds, Mkael; Stephan, Klaas E.; Friston, Karl J.; Dolan, Raymond J. (August 2011). "An In Vivo Assay of Synaptic Function Mediating Human Cognition". Current Biology. 21 (15): 1320–1325. doi:10.1016/j.cub.2011.06.053. ISSN   0960-9822. PMC   3153654 . PMID   21802302.
  39. Moran, Rosalyn J.; Jung, Fabienne; Kumagai, Tetsuya; Endepols, Heike; Graf, Rudolf; Dolan, Raymond J.; Friston, Karl J.; Stephan, Klaas E.; Tittgemeyer, Marc (2011-08-02). "Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents". PLOS ONE. 6 (8) e22790. Bibcode:2011PLoSO...622790M. doi: 10.1371/journal.pone.0022790 . ISSN   1932-6203. PMC   3149050 . PMID   21829652.
  40. Chumbley, Justin R.; Friston, Karl J.; Fearn, Tom; Kiebel, Stefan J. (November 2007). "A Metropolis–Hastings algorithm for dynamic causal models". NeuroImage. 38 (3): 478–487. doi:10.1016/j.neuroimage.2007.07.028. ISSN   1053-8119. PMID   17884582. S2CID   3347682.

Further reading

  1. Kahan, Joshua; Foltynie, Tom (December 2013). "Understanding DCM: Ten simple rules for the clinician". NeuroImage. 83: 542–549. doi: 10.1016/j.neuroimage.2013.07.008 . ISSN   1053-8119. PMID   23850463.
  2. Moran, Rosalyn; Pinotsis, Dimitris A.; Friston, Karl (2013). "Neural masses and fields in dynamic causal modeling". Frontiers in Computational Neuroscience. 7: 57. doi: 10.3389/fncom.2013.00057 . ISSN   1662-5188. PMC   3664834 . PMID   23755005.