Central sulcus | |
---|---|
Details | |
Location | Cerebral cortex |
Identifiers | |
Latin | sulcus centralis cerebri |
NeuroNames | 48 |
NeuroLex ID | birnlex_4035 |
TA98 | A14.1.09.103 |
TA2 | 5435 |
FMA | 83752 |
Anatomical terms of neuroanatomy |
In neuroanatomy, the central sulcus (also central fissure, fissure of Rolando, or Rolandic fissure, after Luigi Rolando) is a sulcus, or groove, in the cerebral cortex in the brains of vertebrates. It is sometimes confused with the longitudinal fissure.
The central sulcus is a prominent landmark of the brain, separating the parietal lobe from the frontal lobe and the primary motor cortex from the primary somatosensory cortex.
The evolution of the central sulcus is theorized to have occurred in mammals when the complete dissociation of the original somatosensory cortex from its mirror duplicate developed in placental mammals such as primates, [1] though the development did not stop there as time progressed the distinction between the two cortices grew.
The central sulcus is more prominent in apes as a result of fine-tuning of the motor system in apes. [1] Hominins (bipedal apes) continued this trend through increased use of their hands due to the advent of bipedalism. This allowed for their hands to be freed up from their use in locomotion to focus on more complex manipulative actions such as grasping, tool use, tool making, and many others. [2]
Previous studies have also shown that the location where the split in the central sulcus occurs is at the division point between the wrist and the individual digits in primary motor cortex, further implicating the relation between the development of this region through the use of their digits. [2] The KNOB is also a suggested cortical substrate of the hand, as there have been anatomical asymmetries which have been linked to hand preference and skill, further suggesting the development of hands in the formation of the central sulcus seeing as the KNOB is the central portion of the central sulcus folded over the buried gyrus. [2]
The central sulcus begins developing around 13 weeks of gestational age and undergoes the fastest period of growth between 13 and 15 weeks of gestational age. However, the most active period of development is at approximately 18 to 19 weeks of gestational age. This is determined by when there is the greatest amount of migration of neurons and fibers occurring. [3] It begins as a point or groove in the parasagittal region of the brain. It then becomes a distinct invagination that lengthens towards the lateral sulcus and towards the longitudinal fissure [4] at approximately 22 to 23 weeks of gestational age. [5]
Between 2 and 3 years of age, the landmark ‘Pli de Passage Frontoparietal Moyen’ (PPFM), which is a depression buried at the central part of the central sulcus, [6] begins to appear. At 3 years of age, the average depth curve of the central sulcus is similar to that of adults. [7]
The development of the shape of the central sulcus is influenced by both genetic and non-genetic factors. The deep structure of the central sulcus has been found to be more consistent in different brains than its superficial structure, suggesting that the superficial structure is more susceptible to non-genetic factors. [8]
The shape of the central sulcus has been found to be different between people of different biological sex. Those of male biological sex have been found to have a less convoluted (small fractal dimension) right anterior wall of the central sulcus. [9] In addition, while the width of the central sulcus varies, the central sulcus of males has shown to have a larger average width than the central sulcus of females. [10] However, this is specific to the right hemisphere since the central sulcus of the left hemisphere has not shown significant results regarding gender differences. With regard to gender differences between hemispheres, females have been shown to have a larger average width of the central sulcus on the left side compared to that of the central sulcus on the right side. [10]
Age also affects the shape of the central sulcus. In adults, the distance between the anterior and posterior walls (sulcal span) increases, while the surface area of walls, the sulcal length of the posterior wall, and the convolution (fractal dimension) for the right posterior wall of the central sulcus decrease. The posterior walls of the central sulcus appear to be affected more with age. [9] Differences between genders regarding the average width of the central sulcus as one ages has also been shown. [10] The average width of the central sulcus in males tends to increase more rapidly over time than that of females. [10]
The surface area of the central sulcus has proven to have an effect on the handedness of an individual. [11] Studies have found that when the central sulcus is larger in the left hemisphere, the individual tends to me more right hand dominant. This is also true about the central sulcus for left handed individuals; there is a greater surface area of the central sulcus in the right hemisphere. While the surface area of the central sulcus is shown to affect the handedness of an individual, it is not understood what the shape of the central sulcus affects as it is not widely explored. There is a region of the central sulcus, called the “hand knob”, which is a notch in the area of the hand motor region. The position of this “knob” can be indicative as well of someone's handedness. [11]
As motor functions develop, it is expected that the shape of the central sulcus will change. This is due to the role of the central sulcus in separating the primary motor cortex and primary somatosensory cortex. [7] For example, differences along the central sulcus have been reported in musicians, particularly with regard to an omega formation along the center portion of the central sulcus, commonly referred to as the "hand knob". [12] Among musicians who specialize in string instruments, this omega formation is specific to the right central sulcus. However, among pianists, this omega formation occurs on both sides but more prominently on the left side.
Attention deficit hyperactivity disorder (ADHD) has been associated with sensorimotor deficits and the central sulcus divides both somatosensory and primary motor areas prompting research into how the shape of the central sulcus and ADHD may alter brain development in these individuals. [13] The cortical thickness and average and maximum depth of the central sulcus has been shown to be larger for ADHD individuals when compared to neurotypical individuals. [13] Additionally, changes in the middle sections of the central sulcus have been linked to children with ADHD. [13]
The morphology of the central sulcus has been suggested to play a role in individuals with the genetic condition known as Williams syndrome. [14] The foreshortening of the central sulcus has been found to be an abnormality associated with this syndrome. [14] This can be seen with the abnormal dorsal end of the central sulcus in individuals with Williams syndrome. [14] However, the abnormal dorsal end of the central sulcus has not been found to be linked to impaired general intelligence. [14] The functional importance of this abnormal part of the central sulcus is still not fully understood though. [14]
The shape of the central sulcus has been linked to the degree of disability in individuals who have a small subcortical ischemic stroke as a result of severe cerebral small vessel disease. [15] However, the severity of the disability has been found to not be fully dependent upon the morphology of the central sulcus. [15] It was found to possibly be due to the hand knobs’ vertical position and size. [15]
The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consisting of the allocortex. It is separated into two cortices, by the longitudinal fissure that divides the cerebrum into the left and right cerebral hemispheres. The two hemispheres are joined beneath the cortex by the corpus callosum. The cerebral cortex is the largest site of neural integration in the central nervous system. It plays a key role in attention, perception, awareness, thought, memory, language, and consciousness. The cerebral cortex is part of the brain responsible for cognition.
The vertebrate cerebrum (brain) is formed by two cerebral hemispheres that are separated by a groove, the longitudinal fissure. The brain can thus be described as being divided into left and right cerebral hemispheres. Each of these hemispheres has an outer layer of grey matter, the cerebral cortex, that is supported by an inner layer of white matter. In eutherian (placental) mammals, the hemispheres are linked by the corpus callosum, a very large bundle of nerve fibers. Smaller commissures, including the anterior commissure, the posterior commissure and the fornix, also join the hemispheres and these are also present in other vertebrates. These commissures transfer information between the two hemispheres to coordinate localized functions.
The parietal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The parietal lobe is positioned above the temporal lobe and behind the frontal lobe and central sulcus.
In neuroanatomy, the precuneus is the portion of the superior parietal lobule on the medial surface of each brain hemisphere. It is located in front of the cuneus. The precuneus is bounded in front by the marginal branch of the cingulate sulcus, at the rear by the parieto-occipital sulcus, and underneath by the subparietal sulcus. It is involved with episodic memory, visuospatial processing, reflections upon self, and aspects of consciousness.
The fusiform gyrus, also known as the lateral occipitotemporal gyrus,is part of the temporal lobe and occipital lobe in Brodmann area 37. The fusiform gyrus is located between the lingual gyrus and parahippocampal gyrus above, and the inferior temporal gyrus below. Though the functionality of the fusiform gyrus is not fully understood, it has been linked with various neural pathways related to recognition. Additionally, it has been linked to various neurological phenomena such as synesthesia, dyslexia, and prosopagnosia.
In neuroanatomy, the lateral sulcus is one of the most prominent features of the human brain. The lateral sulcus is a deep fissure in each hemisphere that separates the frontal and parietal lobes from the temporal lobe. The insular cortex lies deep within the lateral sulcus.
The longitudinal fissure is the deep groove that separates the two cerebral hemispheres of the vertebrate brain. Lying within it is a continuation of the dura mater called the falx cerebri. The inner surfaces of the two hemispheres are convoluted by gyri and sulci just as is the outer surface of the brain.
The supramarginal gyrus is a portion of the parietal lobe. This area of the brain is also known as Brodmann area 40 based on the brain map created by Korbinian Brodmann to define the structures in the cerebral cortex. It is probably involved with language perception and processing, and lesions in it may cause receptive aphasia.
Neuroplasticity, also known as neural plasticity or brain plasticity, is the ability of neural networks in the brain to change through growth and reorganization. It is when the brain is rewired to function in some way that differs from how it previously functioned. These changes range from individual neuron pathways making new connections, to systematic adjustments like cortical remapping or neural oscillation. Other forms of neuroplasticity include homologous area adaptation, cross modal reassignment, map expansion, and compensatory masquerade. Examples of neuroplasticity include circuit and network changes that result from learning a new ability, information acquisition, environmental influences, practice, and psychological stress.
The human secondary somatosensory cortex is a region of cortex in the parietal operculum on the ceiling of the lateral sulcus.
The lobes of the brain are the major identifiable zones of the human cerebral cortex, and they comprise the surface of each hemisphere of the cerebrum. The two hemispheres are roughly symmetrical in structure, and are connected by the corpus callosum. They traditionally have been divided into four lobes, but are today considered as having six lobes each. The lobes are large areas that are anatomically distinguishable, and are also functionally distinct to some degree. Each lobe of the brain has numerous ridges, or gyri, and furrows, the sulci that constitute further subzones of the cortex. The expression "lobes of the brain" usually refers only to those of the cerebrum, not to the distinct areas of the cerebellum.
In neuroanatomy, the parieto-occipital sulcus is a deep sulcus in the cerebral cortex that marks the boundary between the cuneus and precuneus, and also between the parietal and occipital lobes. Only a small part can be seen on the lateral surface of the hemisphere, its chief part being on the medial surface.
In neuroanatomy, a sulcus is a depression or groove in the cerebral cortex. It surrounds a gyrus, creating the characteristic folded appearance of the brain in humans and other mammals. The larger sulci are usually called fissures.
In human neuroanatomy, brain asymmetry can refer to at least two quite distinct findings:
In the human brain, the superior temporal sulcus (STS) is the sulcus separating the superior temporal gyrus from the middle temporal gyrus in the temporal lobe of the brain. A sulcus is a deep groove that curves into the largest part of the brain, the cerebrum, and a gyrus is a ridge that curves outward of the cerebrum.
The primary motor cortex is a brain region that in humans is located in the dorsal portion of the frontal lobe. It is the primary region of the motor system and works in association with other motor areas including premotor cortex, the supplementary motor area, posterior parietal cortex, and several subcortical brain regions, to plan and execute voluntary movements. Primary motor cortex is defined anatomically as the region of cortex that contains large neurons known as Betz cells, which, along with other cortical neurons, send long axons down the spinal cord to synapse onto the interneuron circuitry of the spinal cord and also directly onto the alpha motor neurons in the spinal cord which connect to the muscles.
In brain anatomy, the lunate sulcus or simian sulcus, also known as the sulcus lunatus, is a fissure in the occipital lobe variably found in humans and more often larger when present in apes and monkeys. The lunate sulcus marks the transition between V1 and V2.
Pain empathy is a specific variety of empathy that involves recognizing and understanding another person's pain.
Disconnection syndrome is a general term for a collection of neurological symptoms caused – via lesions to associational or commissural nerve fibres – by damage to the white matter axons of communication pathways in the cerebrum, independent of any lesions to the cortex. The behavioral effects of such disconnections are relatively predictable in adults. Disconnection syndromes usually reflect circumstances where regions A and B still have their functional specializations except in domains that depend on the interconnections between the two regions.
An estimated 90% of the world's human population consider themselves to be right-handed. The human brain's control of motor function is a mirror image in terms of connectivity; the left hemisphere controls the right hand and vice versa. This theoretically means that the hemisphere contralateral to the dominant hand tends to be more dominant than the ipsilateral hemisphere, however this is not always the case and there are numerous other factors which contribute in complex ways to physical hand preference.