Longitudinal fissure

Last updated
Longitudinal fissure
Human brain longitudinal fissure.png
The human brain as viewed from above. Median longitudinal fissure visible in red, running top to bottom.
Longitudinal fissure of cerebrum.gif
Longitudinal fissure shown in red (animation)
Details
Identifiers
Latin fissura longitudinalis cerebri, fissura cerebri longitudinalis
NeuroNames 35
NeuroLex ID birnlex_4041
TA98 A14.1.09.007
TA2 5417
FMA 83727
Anatomical terms of neuroanatomy

The longitudinal fissure (or cerebral fissure, great longitudinal fissure, median longitudinal fissure, interhemispheric fissure) is the deep groove that separates the two cerebral hemispheres of the vertebrate brain. Lying within it is a continuation of the dura mater (one of the meninges) called the falx cerebri. [1] The inner surfaces of the two hemispheres are convoluted by gyri and sulci just as is the outer surface of the brain.

Contents

Structure

Falx cerebri

All three meninges of the cortex (dura mater, arachnoid mater, pia mater) fold and descend deep down into the longitudinal fissure, physically separating the two hemispheres. Falx cerebri is the name given to the dura mater in-between the two hemispheres, whose significance arises from the fact that it is the outermost layer of the meninges. These layers prevent any direct connectivity between the bilateral lobes of the cortex, thus requiring any tracts to pass through the corpus callosum. The vasculature of falx cerebri supplies blood to the innermost surfaces of the cortex, neighboring the midsagittal plane. [2]

Cerebral asymmetry

Though this fissure divides the brain, the two hemispheres of the human cortex are not perfectly symmetrical, both in structure and in function. For example, the planum temporale, roughly corresponding to the Wernicke’s area, was found to be 10 times larger in the left than the right hemisphere. [3] In contrast, the caudate nucleus, within the basal ganglia, was found to be larger in the right hemisphere. [4]

Corpus callosum

The corpus callosum connects the two halves of the brain below the fissure and conveys visual, auditory, and somatosensory messages between each half. The corpus callosum is responsible for eye movement and visual perception, maintaining a balance between arousal and attention, and the ability to identify locations of sensory stimulation. In a clinical setting, those with epilepsy may benefit from the division of the corpus callosum. [5] [6]

Development

Phylogenetically

It is thought that a majority of existing animals, including Homo sapiens, have evolved from a common wormlike ancestor that lived around 600 million years ago, called the urbilaterian. A bilaterian animal is one that has symmetrical left and right body halves. While it is still debated whether this species had a complex brain or not, development of similar species support the hypothesis that it had at least a simple anterior collection of nerve cells, called a cephalon. [7] Furthermore, studies have shown that this cephalon was bilateral, consisting of two or more connected sub-collections that are separated by the mid-sagittal plane, [8] suggesting the first example of such a division.

Ontogenetically

A neural crest appears in the mammalian embryo as soon as the 20th day of development. [9] It is during embryonic development that a neural tube appears and is folded into a hollow structure, as shown in Figure 1. This process is also known as neurulation. [10] The neural tube is where the central nervous system forms, which later on in development will be subdivided and differentiated into distinct sections of the brain and spinal cord. These subdivisions occur by signaling molecules that direct differentiated cells to their correct location of the organism. [11] The bilateral sides of this structure then give rise to the two hemispheres of the Homo sapiens cortex but do not merge at any point besides the corpus callosum. As a result, the longitudinal fissure is formed. [12] The longitudinal fissure can appear as early as the eighth week of development, and distinctly separates the two hemispheres by around the tenth gestational week. [13]

Figure 1: Early embryonic neural tube, depicting the separation of two sides EmbryonicBrain.svg
Figure 1: Early embryonic neural tube, depicting the separation of two sides

Function

Essentially, the fissure's purpose is to separate the brain into two hemispheres, left and right. Through case studies of brain damage or stroke to either side of each hemisphere, there is evidence that the left side of the brain controls the right side of the body, and the right side controlling the left side of the body. [14] Stroke patients have been found to unilateral impairment following damage to either the left or right hemisphere, this effecting the opposite side of the body. [15] Separating each hemisphere allows for specialization of storage, procedural and cognitive function. Through "split-brain experiments", the left hemisphere is shown to specialize in mathematics, language and general logistics. [16] The right hemisphere is further specialized, generally, in music, art, facial recognition and in most spatial events. [17]

The longitudinal fissure also pays a role in the optic nerve tract. This is shown in (figure 4.) with the optic chiasm, which takes the nerve from the right eye to the left hemisphere and the left eye to the right hemisphere. The longitudinal fissure allows for this misdirection and crossover of nerves. [18] The crossover seems to be counterintuitive, however it does serve an adaptive purpose. This purpose is to give us stereopsis, (depth and three-dimensional vision), as well as a development of binocular vision. [19] These two components combined give the ability to have a larger perceived visual field, which coincides with the hypothesis that this is an adaptive function given by the fissures placement and structure. Damage to the nerve past the optic chiasm, will cause loss or impairment to the corresponding eye. If the right side of the brain is damaged and the nerve is damaged or destroyed, then the left eye will also follow the severity of damage. [20]

Clinical significance

The longitudinal fissure plays a key role in corpus callosotomy, neurosurgery resulting in split brain, as it provides unobstructed access to the corpus callosum. Corpus callosotomy is one of the procedures used for pharmacologically treating intractable epilepsy cases, and it consists of the division of the nerve fibers running between the two hemispheres through the corpus callosum. A neurosurgeon separates the two hemispheres physically by pulling them apart with special tools, and cuts through either approximately two thirds of the fibers in the case of partial callosotomy, or the entirety in the case of complete callosotomy. [21] Without the presence of longitudinal fissure, the corpus callosotomy procedure would be significantly more challenging and dangerous, as it would require the surgeon to navigate through densely connected cortical areas. Following the procedure, the two hemispheres are no longer able to communicate with each other as before.

While patients’ brains usually adapt and allow for uninterrupted daily life, cognitive tests can easily determine whether a patient has split-brain. In an experiment involving a chimeric figure, with a woman’s face on the left half and a man’s face on the right half, a patient with split-brain focusing on the middle point will point to the woman’s face when prompted to point to the face in the picture, and will answer “a man” if asked what the picture is depicting. [22] This is because the Fusiform Face Area (FFA) is in the right hemisphere, while language centers are predominantly in the left hemisphere.

Figure 2: Diffusion tensor imaging example The diffusion tensor tractographies of neural tracts for language fnhum-07-00749-g001.png
Figure 2: Diffusion tensor imaging example

Repetitive transcranial magnetic stimulation

In studies, low-frequency repetitive transcranial magnetic stimulation (rTMS) applications have been tested with various cognitive processes during time perception tasks. Studies have analyzed the effects of the low-frequency rTMS on tests of time perception when the rTMS has been applied to the "parietal medial longitudinal fissure". Findings have shown evidence to support the hypothesis that participants in this study would underestimate their perception of time for short amounts of time and overestimate for longer periods of time. Specifically, the 20 participants underestimated 1 second time intervals and overestimated 4 second/9 second intervals after applying 1-Hz rTMS. [23]

Neurosurgery

The longitudinal fissure can serve as an effective surgical passage in the frontal bone during central and pterional craniotomies, which is opening into the skull by surgery. [24] [25] While there are variations in the head shapes of many species, dogs have been found to have a high variation in terms of head shapes making it difficult to find a brain surgical procedure that will work effectively for them. One goal of the study was to distinguish the longitudinal cerebral fissure anatomy and their possible variations in brachy‐(B), dolicho‐(D) and mesaticephalic‐(M) dogs. Even though the lateral cerebral fissure morphology was uniform in the dog breeds. Mesaticephalic‐(M) dogs were found to have the greatest surgical passage resulting in access to more brain structures, while the dolicho‐(D) dogs had the smallest surgical passage.

Research

Figure 3: Area of the corpus callosum in comparison with the longitudinal fissure surface area 201405 corpus callosum.png
Figure 3: Area of the corpus callosum in comparison with the longitudinal fissure surface area

As the corpus callosum is substantially smaller in surface area relative to the longitudinal fissure (Figure 3), fiber bundles passing through are densely packed together, and precision tracking is essential to distinguish between the individual bundles that originate from and lead to the same cortical centers. Understanding such connections allows us to understand the contralateral concurrences and what diseases can result from lesions to them. Diffusion tensor imaging (DTI or dMRI) along with fiber-tracking (FT) algorithms and functional Magnetic Resonance Imaging (fMRI) is used to image these bundles. [26] [27] For instance, occipital-callosal fiber tracts were localized with 1–2  mm precision using DTI-TF techniques - which are very important for the cooperation of visual cortices, and any lesion to them can lead to alexia, the inability to read.

Additional images

Figure 4: Optical nerve cross over Optic nerve pair & two brain hemispheres.jpg
Figure 4: Optical nerve cross over

See also

Related Research Articles

<span class="mw-page-title-main">Optic chiasm</span> Part of the brain where the optic nerves cross

In neuroanatomy, the optic chiasm, or optic chiasma, is the part of the brain where the optic nerves cross. It is located at the bottom of the brain immediately inferior to the hypothalamus. The optic chiasm is found in all vertebrates, although in cyclostomes, it is located within the brain.

<span class="mw-page-title-main">Optic nerve</span> Second cranial nerve, which connects the eyes to the brain

In neuroanatomy, the optic nerve, also known as the second cranial nerve, cranial nerve II, or simply CN II, is a paired cranial nerve that transmits visual information from the retina to the brain. In humans, the optic nerve is derived from optic stalks during the seventh week of development and is composed of retinal ganglion cell axons and glial cells; it extends from the optic disc to the optic chiasma and continues as the optic tract to the lateral geniculate nucleus, pretectal nuclei, and superior colliculus.

<span class="mw-page-title-main">Trigeminal nerve</span> Cranial nerve responsible for the faces senses and motor functions

In neuroanatomy, the trigeminal nerve (lit. triplet nerve), also known as the fifth cranial nerve, cranial nerve V, or simply CN V, is a cranial nerve responsible for sensation in the face and motor functions such as biting and chewing; it is the most complex of the cranial nerves. Its name (trigeminal, from Latin tri- 'three', and -geminus 'twin') derives from each of the two nerves (one on each side of the pons) having three major branches: the ophthalmic nerve (V1), the maxillary nerve (V2), and the mandibular nerve (V3). The ophthalmic and maxillary nerves are purely sensory, whereas the mandibular nerve supplies motor as well as sensory (or "cutaneous") functions. Adding to the complexity of this nerve is that autonomic nerve fibers as well as special sensory fibers (taste) are contained within it.

<span class="mw-page-title-main">Corpus callosum</span> White matter tract connecting the two cerebral hemispheres

The corpus callosum, also callosal commissure, is a wide, thick nerve tract, consisting of a flat bundle of commissural fibers, beneath the cerebral cortex in the brain. The corpus callosum is only found in placental mammals. It spans part of the longitudinal fissure, connecting the left and right cerebral hemispheres, enabling communication between them. It is the largest white matter structure in the human brain, about 10 in (250 mm) in length and consisting of 200–300 million axonal projections.

<span class="mw-page-title-main">Cerebral hemisphere</span> Left and right cerebral hemispheres of the brain

The vertebrate cerebrum (brain) is formed by two cerebral hemispheres that are separated by a groove, the longitudinal fissure. The brain can thus be described as being divided into left and right cerebral hemispheres. Each of these hemispheres has an outer layer of grey matter, the cerebral cortex, that is supported by an inner layer of white matter. In eutherian (placental) mammals, the hemispheres are linked by the corpus callosum, a very large bundle of nerve fibers. Smaller commissures, including the anterior commissure, the posterior commissure and the fornix, also join the hemispheres and these are also present in other vertebrates. These commissures transfer information between the two hemispheres to coordinate localized functions.

<span class="mw-page-title-main">Cerebral peduncle</span> Stalks that attach the cerebrum to the brainstem

The cerebral peduncles are the two stalks that attach the cerebrum to the brainstem. They are structures at the front of the midbrain which arise from the ventral pons and contain the large ascending (sensory) and descending (motor) nerve tracts that run to and from the cerebrum from the pons. Mainly, the three common areas that give rise to the cerebral peduncles are the cerebral cortex, the spinal cord and the cerebellum. The region includes the tegmentum, crus cerebri and pretectum. By this definition, the cerebral peduncles are also known as the basis pedunculi, while the large ventral bundle of efferent fibers is referred to as the cerebral crus or the pes pedunculi.

<span class="mw-page-title-main">Cerebrum</span> Large part of the brain containing the cerebral cortex

The cerebrum, telencephalon or endbrain is the largest part of the brain containing the cerebral cortex, as well as several subcortical structures, including the hippocampus, basal ganglia, and olfactory bulb. In the human brain, the cerebrum is the uppermost region of the central nervous system. The cerebrum develops prenatally from the forebrain (prosencephalon). In mammals, the dorsal telencephalon, or pallium, develops into the cerebral cortex, and the ventral telencephalon, or subpallium, becomes the basal ganglia. The cerebrum is also divided into approximately symmetric left and right cerebral hemispheres.

<span class="mw-page-title-main">Split-brain</span> Condition of the human brain

Split-brain or callosal syndrome is a type of disconnection syndrome when the corpus callosum connecting the two hemispheres of the brain is severed to some degree. It is an association of symptoms produced by disruption of, or interference with, the connection between the hemispheres of the brain. The surgical operation to produce this condition involves transection of the corpus callosum, and is usually a last resort to treat refractory epilepsy. Initially, partial callosotomies are performed; if this operation does not succeed, a complete callosotomy is performed to mitigate the risk of accidental physical injury by reducing the severity and violence of epileptic seizures. Before using callosotomies, epilepsy is instead treated through pharmaceutical means. After surgery, neuropsychological assessments are often performed.

<span class="mw-page-title-main">Dura mater</span> Outermost layer of the protective tissues around the central nervous system (meninges)

In neuroanatomy, dura mater is a thick membrane made of dense irregular connective tissue that surrounds the brain and spinal cord. It is the outermost of the three layers of membrane called the meninges that protect the central nervous system. The other two meningeal layers are the arachnoid mater and the pia mater. It envelops the arachnoid mater, which is responsible for keeping in the cerebrospinal fluid. It is derived primarily from the neural crest cell population, with postnatal contributions of the paraxial mesoderm.

<span class="mw-page-title-main">Great cerebral vein</span>

The great cerebral vein is one of the large blood vessels in the skull draining the cerebrum of the brain. It is also known as the vein of Galen, named for its discoverer, the Greek physician Galen.

<span class="mw-page-title-main">Optic tract</span> Neural pathway within the human visual system

In neuroanatomy, the optic tract is a part of the visual system in the brain. It is a continuation of the optic nerve that relays information from the optic chiasm to the ipsilateral lateral geniculate nucleus (LGN), pretectal nuclei, and superior colliculus.

<span class="mw-page-title-main">Septum pellucidum</span> Thin membrane between the lateral ventricles of the brain

The septum pellucidum is a thin, triangular, vertical double membrane separating the anterior horns of the left and right lateral ventricles of the brain. It runs as a sheet from the corpus callosum down to the fornix.

<span class="mw-page-title-main">Falx cerebri</span> Anatomical structure of the brain

The falx cerebri is a large, crescent-shaped fold of dura mater that descends vertically into the longitudinal fissure between the cerebral hemispheres of the human brain, separating the two hemispheres and supporting dural sinuses that provide venous and CSF drainage to the brain. It is attached to the crista galli anteriorly, and blends with the tentorium cerebelli posteriorly.

<span class="mw-page-title-main">Superior sagittal sinus</span> Anatomical structure of the brain

The superior sagittal sinus, within the human head, is an unpaired area along the attached margin of the falx cerebri. It allows blood to drain from the lateral aspects of anterior cerebral hemispheres to the confluence of sinuses. Cerebrospinal fluid drains through arachnoid granulations into the superior sagittal sinus and is returned to venous circulation.

<span class="mw-page-title-main">Inferior sagittal sinus</span> Anatomical structure of the brain

The inferior sagittal sinus, within the human head, is an area beneath the brain which allows blood to drain outwards posteriorly from the center of the head. It drains to the straight sinus, which connects to the transverse sinuses. See diagram : labeled in the brain as "SIN. SAGITTALIS INF.".

<span class="mw-page-title-main">Parieto-occipital sulcus</span> Fold which separates the parietal and occipital lobes of the brain

In neuroanatomy, the parieto-occipital sulcus is a deep sulcus in the cerebral cortex that marks the boundary between the cuneus and precuneus, and also between the parietal and occipital lobes. Only a small part can be seen on the lateral surface of the hemisphere, its chief part being on the medial surface.

The projection fibers consist of efferent and afferent fibers uniting the cortex with the lower parts of the brain and with the spinal cord. In human neuroanatomy, bundles of axons called tracts, within the brain, can be categorized by their function into association fibers, projection fibers, and commissural fibers.

<span class="mw-page-title-main">Commissural fiber</span> Axons that connect the two hemispheres of the brain

The commissural fibers or transverse fibers are axons that connect the two hemispheres of the brain. In contrast to commissural fibers, association fibers connect regions within the same hemisphere of the brain, and projection fibers connect each region to other parts of the brain or to the spinal cord.

<span class="mw-page-title-main">Nerve tract</span> Bundle of nerve fibers (axons) connecting nuclei of the central nervous system

A nerve tract is a bundle of nerve fibers (axons) connecting nuclei of the central nervous system. In the peripheral nervous system, this is known as a nerve fascicle, and has associated connective tissue. The main nerve tracts in the central nervous system are of three types: association fibers, commissural fibers, and projection fibers. A nerve tract may also be referred to as a commissure, decussation, or neural pathway. A commissure connects the two cerebral hemispheres at the same levels, while a decussation connects at different levels.

<span class="mw-page-title-main">Anatomical terms of neuroanatomy</span> Terminology used to describe the central and peripheral nervous systems

This article describes anatomical terminology that is used to describe the central and peripheral nervous systems - including the brain, brainstem, spinal cord, and nerves.

References

  1. "longitudinal fissure - Ontology Browser - Rat Genome Database". rgd.mcw.edu. Retrieved 2019-09-24.
  2. Bair, Michael M.; Munakomi, Sunil (2019), "Neuroanatomy, Falx Cerebri", StatPearls, StatPearls Publishing, PMID   31424888 , retrieved 2019-09-24
  3. Jill B. Becker (2002). Behavioral Endocrinology 2e. MIT Press. pp. 103–. ISBN   978-0-262-52321-9. Retrieved 4 January 2013.
  4. Watkins, K. (2001). Structural Asymmetries in the Human Brain: A Voxel-based Statistical Analysis of 142 MRI Scans. Cerebral Cortex, 11(9), 868-877. doi : 10.1093/cercor/11.9.868
  5. Goldstein, Andrea; Covington, Benjamin P.; Mahabadi, Navid; Mesfin, Fassil B. (2019), "Neuroanatomy, Corpus Callosum", StatPearls, StatPearls Publishing, PMID   28846239 , retrieved 2019-11-02
  6. Buklina, S. B. (2005-06-01). "The corpus callosum, interhemisphere interactions, and the function of the right hemisphere of the brain". Neuroscience and Behavioral Physiology. 35 (5): 473–480. doi:10.1007/s11055-005-0082-5. ISSN   1573-899X. PMID   16033195. S2CID   14145192.
  7. Hejnol, A., & Martindale, M. Q. (2008). Acoel development supports a simple planula-like urbilaterian. Philosophical Transactions of the Royal Society B: Biological Sciences,363(1496), 1493-1501. doi : 10.1098/rstb.2007.2239
  8. Mayer, G., Whitington, P. M., Sunnucks, P., & Pflüger, H. (2010). A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evolutionary Biology, 10, 255. doi : 10.1186/1471-2148-10-255
  9. O'Rahilly, R.; Müller, F. (September 2007). "The development of the neural crest in the human". Journal of Anatomy. 211 (3): 335–51. doi:10.1111/j.1469-7580.2007.00773.x. PMC   2375817 . PMID   17848161.
  10. Dady, A.; Havis, E.; Escriou, V.; Catala, M.; Duband, J. L. (2014). "Junctional Neurulation: A Unique Developmental Program Shaping a Discrete Region of the Spinal Cord Highly Susceptible to Neural Tube Defectsdoi= 10.1523/JNEUROSCI.1850-14.2014". The Journal of Neuroscience. 34 (39): 13208–13221. doi:10.1523/JNEUROSCI.1850-14.2014. PMC   6608335 . PMID   25253865.
  11. Patthey, Cédric; Gunhaga, Lena (2014-02-01). "Signaling pathways regulating ectodermal cell fate choices". Experimental Cell Research. Developmental Biology. 321 (1): 11–16. doi:10.1016/j.yexcr.2013.08.002. ISSN   0014-4827. PMID   23939346.
  12. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A., White, L. E., . . . Platt, M. L. (2018). Neuroscience. New York; Oxford: Sinauer Associates.
  13. Dooling, E.C.; Chi, J.G.; Gilles, F.H. (1983), "Telencephalic Development: Changing Gyral Patterns", The Developing Human Brain, Elsevier, pp. 94–104, doi:10.1016/b978-0-7236-7017-9.50015-6, ISBN   9780723670179
  14. Marieb, Hoehn. Brain Anatomy. http://www.wou.edu/~lemastm/Teaching/BI335/Laboratory%2001%20-%20Brain%20Anatomy.pdf
  15. Gillen, Robert; Tennen, Howard; McKee, Tara (2005-04-01). "Unilateral spatial neglect: Relation to rehabilitation outcomes in patients with right hemisphere stroke". Archives of Physical Medicine and Rehabilitation. 86 (4): 763–767. doi:10.1016/j.apmr.2004.10.029. ISSN   0003-9993. PMID   15827929.
  16. "Neuroscience For Kids - Hemispheres". faculty.washington.edu. Retrieved 2019-10-21.
  17. "Neuroscience For Kids - Hemispheres". faculty.washington.edu. Retrieved 2019-10-21.
  18. Ireland, Ashley C.; Carter, Iverson B. (2019), "Neuroanatomy, Optic Chiasm", StatPearls, StatPearls Publishing, PMID   31194427 , retrieved 2019-11-02
  19. Ireland, Ashley C.; Carter, Iverson B. (2019), "Neuroanatomy, Optic Chiasm", StatPearls, StatPearls Publishing, PMID   31194427 , retrieved 2019-11-02
  20. Ireland, Ashley C.; Carter, Iverson B. (2019), "Neuroanatomy, Optic Chiasm", StatPearls, StatPearls Publishing, PMID   31194427 , retrieved 2019-11-02
  21. "Corpus Callosotomy - Treatments - For Patients - UR Neurosurgery - University of Rochester Medical Center". www.urmc.rochester.edu. Retrieved 2019-09-20.
  22. Levy, J., Trevarthen, C., & Sperry, R. W. (1972). Perception Of Bilateral Chimeric Figures Following Hemispheric Deconnexion. Brain, 95(1), 61-78. doi : 10.1093/brain/95.1.61
  23. Manaia, Fernanda; Rocha, Kaline; Marinho, Victor; Magalhães, Francisco; Oliveira, Thomaz; Carvalho, Valécia; Araújo, Thalys; Ayres, Carla; Gupta, Daya; Velasques, Bruna; Ribeiro, Pedro (June 2019). "The role of low-frequency rTMS in the superior parietal cortex during time estimation". Neurological Sciences. 40 (6): 1183–1189. doi:10.1007/s10072-019-03820-8. ISSN   1590-3478. PMID   30850896. S2CID   71716091.
  24. Johns Hopkins Medicine. (n.d). Craniotomy. Health. Retrieved from https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/craniotomy
  25. Carreira, L., & Ferreira, A. (2015).Longitudinal cerebral fissure anatomy variations in brachy-, dolicho- and mesaticephalic dogs and their importance to brain surgery. The Anatomical Record : Advances in Integrative Anatomy and Evolutionary Biology., 298(9), 1612–1621. doi : 10.1002/ar.23183
  26. Dougherty, R. F., Ben-Shachar, M., Bammer, R., Brewer, A. A., & Wandell, B. A. (2005). Functional organization of human occipital-callosal fiber tracts. Proceedings of the National Academy of Sciences, 102(20), 7350-7355. doi : 10.1073/pnas.0500003102
  27. Rokem, A., Takemura, H., Bock, A. S., Scherf, K. S., Behrmann, M., Wandell, B. A., . . . Pestilli, F. (2017). The visual white matter: The application of diffusion MRI and fiber tractography to vision science. Journal of Vision, 17(2), 4. doi : 10.1167/17.2.4