This article or section is in a state of significant expansion or restructuring. You are welcome to assist in its construction by editing it as well. If this article or section has not been edited in several days , please remove this template. If you are the editor who added this template and you are actively editing, please be sure to replace this template with {{ in use }} during the active editing session. Click on the link for template parameters to use. This article was last edited by Aadirulez8 (talk | contribs) 3 hours ago. (Update timer) |
This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Deep brain stimulation | |
---|---|
Specialty | Neurosurgery |
MeSH | D046690 |
MedlinePlus | 007453 |
Deep brain stimulation (DBS) is a surgical procedure that implants a neurostimulator and electrodes which sends electrical impulses to specified targets in the brain responsible for movement control. The treatment is designed for a range of movement disorders such as Parkinson's disease, essential tremor, and dystonia, as well as for certain neuropsychiatric conditions like obsessive-compulsive disorder (OCD) or neurological disorders like epilepsy. [1] The exact mechanisms of DBS are complex and not entirely clear, but it is known to modify brain activity in a structured way. [2]
DBS has been approved by the Food and Drug Administration as a treatment for essential and Parkinsonian tremor and since 1997, [3] and for Parkinson's disease (PD) since 2002. DBS was approved as humanitarian device exemptions for dystonia in 2003, [4] obsessive–compulsive disorder (OCD) in 2009, and approved for epilepsy in 2018. [5] [6] [7] DBS has been studied in clinical trials as a potential treatment for chronic pain, for various affective disorders, including major depression, for Alzheimer's Disease and drug addiction, among other brain disorders. It is one of few neurosurgical procedures that allow blinded studies. [1]
As a first approximation, DBS is thought to mimic the clinical effects of lesioning, [8] likely by attenuating (pathologically elevated) information flow through affected brain networks. [9] Thus, DBS is thought to create an 'informational lesion', [10] which can be switched off by turning off the DBS device, i.e. is largely reversible. This is a strong advantage compared to permanent brain lesions that are also applied to similar targets in similar conditions in the field of ablative stereotactic surgery.
The DBS system consists of three components: an implanted pulse generator (IPG), its leads and an extension. The IPG is a battery-powered neurostimulator encased in a titanium housing, which sends electrical pulses to the brain that interfere with neural activity at the target site.
The leads are two coiled wires insulated in polyurethane with four platinum-iridium electrodes that allow delivery of electric charge from the battery back implanted in the chest wall. The battery pack is usually situated subcutaneously below the clavicle and rarely in the abdomen. The leads, in turn, are connected to the battery by an insulated extension wire which travels from the chest wall superiorly along the back of the neck below the skin, behind the ear, and finally enters the skull through a surgically made burr hole to terminate in the deep nuclei of the brain. [11] After surgery, battery dosage is titrated to individual symptoms, a process which requires repeat visits to a clinician for readjustment. [12]
DBS leads are placed in the brain according to the type of symptoms to be addressed. For non-Parkinsonian essential tremor, the lead is placed in either the ventrointermediate nucleus of the thalamus or the zona incerta; [13] for dystonia and symptoms associated with PD (rigidity, bradykinesia/akinesia, and tremor), the lead may be placed in either the globus pallidus internus or the subthalamic nucleus; for OCD and depression to the nucleus accumbens; for incessant pain to the posterior thalamic region or periaqueductal gray; and for epilepsy treatment to the anterior thalamic nucleus.[ citation needed ]
All three components are surgically implanted inside the body. Lead implantation may take place under local anesthesia or under general anesthesia ("asleep DBS"), such as for dystonia. A hole about 14 mm in diameter is drilled in the skull and the probe electrode is inserted stereotactically, using either frame-based or frameless stereotaxis. [14] During the awake procedure with local anesthesia, feedback from the person is used to determine the optimal placement of the permanent electrode. During the asleep procedure, intraoperative MRI guidance is used for direct visualization of brain tissue and device. [15] The installation of the IPG and extension leads occurs under general anesthesia. [16] The right side of the brain is stimulated to address symptoms on the left side of the body and vice versa.[ citation needed ]
Though not common, placement can be accompanied by intracranial hemorrhage, infection or obstructive hydrocephalus, which may require repositioning or a stay in the neurological intensive care unit. Long term negative effects of the device include an increased risk of decreased mental function and dementia beyond that typically seen with neurodegenerative disorders.[ citation needed ]
DBS is not considered to be a disease-modifying treatment, but rather one that improves symptoms.[ citation needed ]
DBS is used to manage some of the symptoms of Parkinson's disease that cannot be adequately controlled with medications. [11] [17] PD is treated by applying high-frequency (> 100 Hz) stimulation to target structures in the depth of the brain. Frequently used targets include the subthalamic nucleus (STN), internal pallidum (GPi) and ventrointermediate nucleus of the thalamus (VIM).
DBS is recommended for people who have PD with motor fluctuations and tremors inadequately controlled by medication, or to those who are intolerant to medication, as long as they do not have severe neuropsychiatric problems. [18] Four areas of the brain have been treated with neural stimulators in PD, with the majority focusing on either the GPi or the STN. [19]
General differences between targets are not easy to summarize, but often include the following:
Selection of the correct DBS target is a complicated process. Multiple clinical characteristics are used to select the target including – identifying the most troublesome symptoms, the dose of levodopa that the patient is currently taking, the effects and side-effects of current medications and concurrent problems. Decisions are often made in multidisciplinary teams at specialized institutions.
The pedunculopontine nucleus has been used as an investigational target to treat gait freezing.[ citation needed ]
ET is a neurological condition characterized by involuntary and rhythmic shaking and the most common movement disorder. [20] ET was the first indication to be approved for DBS (alongside Parkinsonian tremor) and before DBS had a long history of being treated with ablative brain lesioning. [21] Already in the first publication on the matter by the team of Alim Louis Benabid, it could be shown that frequencies above 100 Hz are most effective for cessation of tremor, while lower frequencies have less effect. [22] In clinical practice, frequencies between 80 and 180 Hz are typically applied. DBS electrodes commonly target the ventrointermediate nucleus of the thalamus (VIM) or ventrally adjacent areas that have been referred to as parts of the zona incerta, or posterior thalamic area. Recent metaanalytical evidence suggests that multiple targets along the circuitry of the cerebellothalamic pathway (also referred to as the dentatorubrothalamic or dentatothalamic tract) are similarly effective, i.e. modulating the cerebellar inflows into the thalamus may be key for therapeutic efficacy, [23] [24] for a review see. [25] Despite its success, DBS for ET is not without side effects, which can include speech difficulties and paresthesia. Similar if not the same surgical targets have been applied to treat ET using surgical lesioning in both historical but also modern context, for instance using MR-guided Focused Ultrasound, Gamma-Knife Radiosurgery or conventional radiofrequency lesioning. For instance, the annual volume of MRgFUS thalamotomies has recently overtaken the volume of DBS cases to treat ET. [26]
DBS is also an established therapeutic option for individuals with dystonia, a movement disorder characterized by sustained or repetitive muscle contractions, resulting in abnormal postures and involuntary movements. DBS is effective in treating primary generalized dystonia, and also used for focal dystonias such as cervical dystonia and task-specific dystonias (e.g., writer's cramp). In dystonia, marked effects can be reached by targeting the GPi using high frequency DBS, with large randomized trials demonstrating improvements of ~45% and significant improvements in quality of life within the first six months of treatment. [27] Similar effects have been reported in open label trials that targeted the STN (but this target is investigational for dystonia). [9] In contrast to some symptoms in Parkinson's Disease or Essential Tremor, improvements in dystonia are often described to appear over weeks to months. This delayed response is thought to reflect the complexity of motor circuits involved in dystonia and the long-term plastic changes required for symptom relief. Despite the slower onset, many patients experience lasting and meaningful reductions in dystonia-related disability. DBS for dystonia is generally considered safe, but like all neuromodulation therapies, it comes with potential risks, including infection, hardware complications, or stimulation-related side effects such as speech difficulties. Ongoing research aims to optimize DBS targeting and stimulation settings to enhance outcomes for individuals with different types of dystonia. Recent large-scale mapping efforts have suggested slightly different optimal target sites for various forms of dystonia, such as generalized vs. cervical [28] or appendicular vs. axial [29] phenotypes of the disorder, potentially due to differing parts of the motor system being involved in different forms. In an attempt to develop physiomarkers that could guide adaptive forms of deep brain stimulation, researchers have identified elevated synchrony in the theta band to be associated with symptom severity, which was found maximally expressed at optimal stimulation sites within the GPi. [30] [31]
DBS for OCD, [32] Tourette's Syndrome, [33] and dystonia were first completed in 1999. [34]
DBS for OCD received a humanitarian device exemption from the FDA in 2009. [35] In Europe, the CE Mark for Deep Brain Stimulation (DBS) for Obsessive-Compulsive Disorder (OCD) was active from 2009 to 2022 but not renewed thereafter due to a lack of coveraage by government health agencies. [36] [37]
As many as 36.3% of epilepsy patients are drug-resistant, i.e. may not be sufficiently treated with medication alone. [38] These patients are at risk for significant morbidity and mortality including sudden unexpected death in epilepsy (SUDEP). [39] If a seizure focus (i.e. seizure onset zone) can be determined (using MRI and/or invasive stereo-EEG recordings) resective brain surgery that involves removing brain tissue with the ictal focus is generally preferred, since this may potentially lead to a curative outcome (i.e. a state where no seizures happen anymore). In cases where resective surgery is not an option, other neurosurgical options such as responsive neurostimulation (RNS), DBS, or vagus nerve stimulation may be considered. [40] While RNS is a method that includes brain sensing and brain stimulation, i.e. represents a form of adaptive deep brain stimulation, classical forms of DBS are also applied, typically at the standard 130 Hz frequency. The anterior nucleus of the thalamus (ANT) is the most commonly targeted area in DBS for epilepsy and the only FDA approved target site (see above). This multicenter, randomized, controlled SANTE trial (Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy) demonstrated that DBS targeting the ANT significantly reduced seizure frequency in patients with medically refractory epilepsy. Over time, patients experienced sustained seizure reductions, with some achieving more than a 50% decrease in seizures. The SANTE trial has been a pivotal study, leading to the approval of ANT-DBS for epilepsy in many countries. This region plays a key role in the network of structures that propagate seizure activity.
Beyond the ANT, several other brain regions have been explored as potential DBS targets for epilepsy. These include:
As mentioned above, the first DBS application for Tourette's Syndrome has been carried out by the team of Veerle Visser-Vandewalle in 1999. [33] Building upon the ablative lesion cases carried out by Rolf Hassler and colleagues, [43] Visser-Vandewalle chose the intersection between the centromedian, parafascicular and ventrooralis internus nuclei of the thalamus as her DBS target. Authors reported that, after surgery, tics disappeared and "a change in the patient's character occurred in that he had become much more kind-hearted." DBS has been used experimentally in treating adults with severe Tourette syndrome who do not respond to conventional treatment. Despite widely publicized early successes, DBS remains a highly experimental procedure for treating Tourette's, and more study is needed to determine whether long-term benefits outweigh the risks. [44] [45] [46] [47] The procedure is well tolerated, but complications include "short battery life, abrupt symptom worsening upon cessation of stimulation, hypomanic or manic conversion, and the significant time and effort involved in optimizing stimulation parameters". [48]
The procedure is invasive and expensive and requires long-term expert care. Benefits for severe Tourette's are inconclusive, considering the less robust effects of this surgery seen in the Netherlands. Tourette's is more common in pediatric populations, tending to remit in adulthood, so, in general, this would not be a recommended procedure for use on children. It may not always be obvious how to utilize DBS for a particular person because the diagnosis of Tourette's is based on a history of symptoms rather than an examination of neurological activity. Due to concern over the use of DBS in Tourette syndrome treatment, the Tourette Association of America convened a group of experts to develop recommendations guiding the use and potential clinical trials of DBS for TS. [49]
Robertson reported that DBS had been used on 55 adults by 2011, remained an experimental treatment at that time, and recommended that the procedure "should only be conducted by experienced functional neurosurgeons operating in centres which also have a dedicated Tourette syndrome clinic". [45] According to Malone et al. (2006), "Only patients with severe, debilitating, and treatment-refractory illness should be considered; while those with severe personality disorders and substance-abuse problems should be excluded." [48] Du et al. (2010) say, "As an invasive therapy, DBS is currently only advisable for severely affected, treatment-refractory TS adults". [46] Singer (2011) says, "pending determination of patient selection criteria and the outcome of carefully controlled clinical trials, a cautious approach is recommended". [44] Viswanathan et al. (2012) say DBS should be used for people with "severe functional impairment that cannot be managed medically". [50]
DBS has also been under investigational use for treatment resistant depression. Beginning in the 1950s, treatment has been attempted in the subcallosal cingulate region [51] and the ventral capsule/ventral striatum (VC/VS) [52] have shown mixed outcomes. diffusion-weighted imaging based tractography has led to the discovery of the so-called 'depression switch', [53] the intersection of four bundles that allowed more deliberate targeting of DBS in the SCC area and improved results in additional open-label studies. [54]
Beyond the SCC and VC/VS, a third target includes the so-called 'superolateral branch' of the medial forebrain bundle (MFB) at the anterior limb of the internal capsule, [55] taking a course within the capsule, rather than following a trans-hypothalamic route as known for the MFB proper. [56] This target site was discovered serendipitously when a patient with Parkinson's Disease developed hypomania under subthalamic nucleus DBS. [57] While this is not an uncommon side-effect of STN-DBS and alternative pathomechanisms have been suggested, [58] [59] the original investigators attributed the occurrence of hypomania to stimulation of a hitherto undescribed 'superolateral' branch of the MFB, which supposedly only exists in humans. [60] While anatomical descriptions as well as supposed mechanisms for this target site have been debated, [61] [62] clinical effects of this DBS target in patients with TRD have been very promising and at times with sudden onset of symptom improvements in open-label studies. [63]
Stimulation of the periaqueductal gray and periventricular gray for nociceptive pain, and the internal capsule, ventral posterolateral nucleus, and ventral posteromedial nucleus for neuropathic pain has produced impressive results with some people, but results vary. One study [64] of 17 people with intractable cancer pain found that 13 were virtually pain-free and only four required opioid analgesics on release from hospital after the intervention. Most ultimately did resort to opioids, usually in the last few weeks of life. [65] DBS has also been applied for phantom limb pain. [66]
Results of DBS in people with dystonia, where positive effects often appear gradually over a period of weeks to months, indicate a role of functional reorganization in at least some cases. [67] The procedure has been tested for effectiveness in people with epilepsy that is resistant to medication. [68] DBS may reduce or eliminate epileptic seizures with programmed or responsive stimulation.[ citation needed ]
DBS of the septal areas of persons with schizophrenia has resulted in enhanced alertness, cooperation, and euphoria. [69] Persons with narcolepsy and complex-partial seizures also reported euphoria and sexual thoughts from self-elicited DBS of the septal nuclei. [70]
Orgasmic ecstasy was reported with the electrical stimulation of the brain with depth electrodes in the left hippocampus at 3mA, and the right hippocampus at 1 mA. [71]
In 2015, a group of Brazilian researchers led by neurosurgeon Erich Fonoff described a new technique that allows for simultaneous implants of electrodes called bilateral stereotactic procedure for DBS. The main benefits are less time spent on the procedure and greater accuracy. [72]
In 2016, DBS was found to improve learning and memory in a mouse model of Rett syndrome. [73] More recent (2018) work showed, that forniceal DBS upregulates genes involved in synaptic function, cell survival, and neurogenesis, [74] making some first steps at explaining the restoration of hippocampal circuit function.
DBS is FDA approved or has FDA device exemptions for treatment of Parkinson's Disease, dystonia, essential tremor, obsessive-compulsive disorder and epilepsy. In Europe, beyond these indications, a CE mark exists for treatment of Alzheimer's Disease. There was a past device exemption for OCD as well but this has not been renewed. [36] All other indications are considered investigational, i.e. carried out within medical studies under IRB approval.
The table below summarizes the history of FDA approval for DBS since creation of the device.
Indication | Approval Date | Details | DBS Target | Evidence | Source |
---|---|---|---|---|---|
Essential Tremor (or Parkinsonian Tremor) | July 31, 1997 | The FDA approved DBS for the suppression of tremor in the upper extremity in patients with essential tremor. | Ventral intermediate nucleus of the thalamus (VIM) | The approval was based on clinical trials showing significant tremor reduction with thalamic DBS in patients with essential tremor, demonstrating long-term efficacy and safety. The key study is. [75] | FDA |
Parkinson's Disease | January 14, 2002 | Approved for advanced Parkinson's disease symptoms not adequately controlled by medications. | Subthalamic nucleus (STN) or internal globus pallidus (GPi) | The key trial that led to approval is. [76] Further large-scale randomized controlled trials such as, [77] demonstrated the superiority of DBS in the subthalamic nucleus compared to best medical therapy, improving motor function and quality of life. | FDA |
Dystonia | April 15, 2003 | Granted under a Humanitarian Device Exemption (HDE) for the treatment of chronic, intractable primary dystonia, including generalized and segmental dystonia, hemidystonia, and cervical dystonia in patients seven years of age or above. | Internal globus pallidus (GPi) | The key evidence came from smaller clinical trials under the Humanitarian Device Exemption, where DBS significantly improved motor function in patients with primary dystonia. Prominent trials include. [78] [27] | FDA |
Obsessive-Compulsive Disorder | February 19, 2009 | Approved under HDE for adjunctive treatment of severe, treatment-resistant OCD. | Nucleus Accumbens (NAc) | Initial approval came under HDE based on evidence from smaller, open-label trials, such as, [79] showing reductions in OCD symptoms in severe cases. | FDA |
Epilepsy | April 27, 2018 | Approved for bilateral stimulation of the anterior nucleus of the thalamus (ANT) as an adjunctive therapy to reduce the frequency of seizures in adults with partial-onset seizures. | Anterior nucleus of the thalamus (ANT) | The key evidence came from the SANTE trial, [80] demonstrating a significant reduction in seizure frequency in patients receiving DBS. | FDA |
Adaptive of Closed Loop Deep Brain Stimulation is a technique in which a steering signal influences when, with which amplitude or at which electrode contacts the DBS system is activated. This steering signal can be a physiological sensing signal, which is typically either recorded from the same implanted electrode or a cortical electrode/ECoG strip/grid. Alternatively, signals from wearables, that e.g. detect symptoms such as tremor, may be used to guide stimulation across time. The concept of adaptive deep brain stimulation is as old as the concept of electrical stimulation of the brain, itself, i.e. originates in the 1950ies-1960ies and was implemented by early pioneers such as Carl-Wilhelm Sem-Jacobsen, [3] Natalia Bechtereva, [4] José Delgado [5] or Robert Heath. [6] The reason these scientists came up with the concept so early was out of necessity: At the time, chronic stimulation as carried out in open-loop (conventional) DBS applications was not technically possible using fully implanted devices, since the battery technology at the time was not ready to do so. [8] With the advent of 'modern' DBS as implemented by the team of Alim Louis Benabid, for decades, chronic, open-loop DBS became the dominant application. Here, pulses are emitted to the brain tissue in a fixed frequency (often 130 Hz) without sensing brain signals or other forms of a steering signal.It took until the 2010s, after a demonstration of efficacy of aDBS in the macaque by the team of Hagai Bergman in 2011, [10] the first in-human application of aDBS was carried out by the team of Peter Brown in 2013, [9] followed by the team of Alberto Priori in the same year. [19] Since then, several companies, including Medtronic and Newronika have begun developing commercial applications of closed-loop DBS.
DBS carries the risks of major surgery, with a complication rate related to the experience of the surgical team. The major complications include hemorrhage (1–2%) and infection (3–5%). [81]
The potential exists for neuropsychiatric side effects after DBS, including apathy, hallucinations, hypersexuality, cognitive dysfunction, depression, and euphoria. However, these effects may be temporary and related to (1) incorrect placement of electrodes, (2) open-loop VS closed-loop stimulation, meaning a constant stimulation or an A.I. monitoring delivery system [82] and (3) calibration of the stimulator, so these side effects are potentially reversible. [83]
Because the brain can shift slightly during surgery, the electrodes can become displaced or dislodged from the specific location. This may cause more profound complications such as personality changes, but electrode misplacement is relatively easy to identify using CT scan. Surgery complications may also occur, such as bleeding within the brain. After surgery, swelling of the brain tissue, mild disorientation, and sleepiness are normal. After 2–4 weeks, a follow-up visit is used to remove sutures, turn on the neurostimulator, and program it.[ citation needed ]
Impaired swimming skills surfaced as an unexpected risk of the procedure; several Parkinson's disease patients lost their ability to swim after receiving deep brain stimulation. [84] [85]
The exact mechanism of action of DBS is not known. [86] A variety of hypotheses try to explain the mechanisms of DBS: [87] [88]
DBS represents an advance on previous treatments which involved pallidotomy (i.e., surgical ablation of the globus pallidus) or thalamotomy (i.e., surgical ablation of the thalamus). [89] Instead, a thin lead with multiple electrodes is implanted in the globus pallidus, nucleus ventralis intermedius thalami, or subthalamic nucleus, and electric pulses are used therapeutically. The lead from the implant is extended to the neurostimulator under the skin in the chest area.[ citation needed ]
Its direct effect on the physiology of brain cells and neurotransmitters is currently debated, but by sending high-frequency electrical impulses into specific areas of the brain, it can mitigate symptoms [90] and directly diminish the side effects induced by PD medications, [91] allowing a decrease in medications, or making a medication regimen more tolerable.[ citation needed ]
There are three major competitors in the current market for stimulators, Boston Scientific, Medtronic and Abbott. Medtronic is developing a closed loop system which can be based on automatic feedback and Abbott allows remote programming.[ citation needed ]
Dystonia is a neurological hyperkinetic movement disorder in which sustained or repetitive muscle contractions occur involuntarily, resulting in twisting and repetitive movements or abnormal fixed postures. The movements may resemble a tremor. Dystonia is often intensified or exacerbated by physical activity, and symptoms may progress into adjacent muscles.
In the anatomy of the brain, the centromedian nucleus, also known as the centrum medianum, is a nucleus in the posterior group of the intralaminar thalamic nuclei (ITN) in the thalamus. There are two centromedian nuclei arranged bilaterally.
The subthalamic nucleus (STN) is a small lens-shaped nucleus in the brain where it is, from a functional point of view, part of the basal ganglia system. In terms of anatomy, it is the major part of the subthalamus. As suggested by its name, the subthalamic nucleus is located ventral to the thalamus. It is also dorsal to the substantia nigra and medial to the internal capsule.
Hyperkinesia refers to an increase in muscular activity that can result in excessive abnormal movements, excessive normal movements, or a combination of both. Hyperkinesia is a state of excessive restlessness which is featured in a large variety of disorders that affect the ability to control motor movement, such as Huntington's disease. It is the opposite of hypokinesia, which refers to decreased bodily movement, as commonly manifested in Parkinson's disease.
Thalamotomy is a surgical procedure in which a functional lesion is made into the thalamus to improve the overall brain function in patients. First introduced in the 1950s, it is primarily effective for tremors such as those associated with Parkinson's disease, where a selected portion of the thalamus is surgically destroyed (ablated). Neurosurgeons use specialized equipment to precisely locate an area of the thalamus, usually choosing to work on only one side. Bilateral procedures are poorly tolerated because of increased complications and risk, including vision and speech problems. The positive effects on tremors are immediate. Other less destructive procedures are sometimes preferred, such as subthalamic deep brain stimulation, since this procedure can also improve tremors and other symptoms of PD.
Hypokinesia is one of the classifications of movement disorders, and refers to decreased bodily movement. Hypokinesia is characterized by a partial or complete loss of muscle movement due to a disruption in the basal ganglia. Hypokinesia is a symptom of Parkinson's disease shown as muscle rigidity and an inability to produce movement. It is also associated with mental health disorders and prolonged inactivity due to illness, amongst other diseases.
Spasmodic torticollis is an extremely painful chronic neurological movement disorder causing the neck to involuntarily turn to the left, right, upwards, and/or downwards. The condition is also referred to as "cervical dystonia". Both agonist and antagonist muscles contract simultaneously during dystonic movement. Causes of the disorder are predominantly idiopathic. A small number of patients develop the disorder as a result of another disorder or disease. Most patients first experience symptoms midlife. The most common treatment for spasmodic torticollis is the use of botulinum toxin type A.
In the management of Parkinson's disease, due to the chronic nature of Parkinson's disease (PD), a broad-based program is needed that includes patient and family education, support-group services, general wellness maintenance, exercise, and nutrition. At present, no cure for the disease is known, but medications or surgery can provide relief from the symptoms.
Responsive neurostimulation device is a medical device that senses changes in a person's body and uses neurostimulation to respond in the treatment of disease. The FDA has approved devices for use in the United States in the treatment of epileptic seizures and chronic pain conditions. Devices are being studied for use in the treatment of essential tremor, Parkinson's disease, Tourette's syndrome, depression, obesity, and post-traumatic stress disorder.
The internal globus pallidus is one of the two subcortical nuclei that provides inhibitory output in the basal ganglia, the other being the substantia nigra pars reticulata. Together with the external globus pallidus (GPe), it makes up one of the two segments of the globus pallidus, a structure that can decay with certain neurodegenerative disorders and is a target for medical and neurosurgical therapies. The GPi, along with the substantia nigra pars reticulata, comprise the primary output of the basal ganglia, with its outgoing GABAergic neurons having an inhibitory function in the thalamus, the centromedian complex and the pedunculopontine complex.
Ablative brain surgery is the surgical ablation by various methods of brain tissue to treat neurological or psychological disorders. The word "Ablation" stems from the Latin word Ablatus meaning "carried away". In most cases, however, ablative brain surgery does not involve removing brain tissue, but rather destroying tissue and leaving it in place. The lesions it causes are irreversible. There are some target nuclei for ablative surgery and deep brain stimulation. Those nuclei are the motor thalamus, the globus pallidus, and the subthalamic nucleus.
Myoclonic dystonia or Myoclonus dystonia syndrome is a rare movement disorder that induces spontaneous muscle contraction causing abnormal posture. The prevalence of myoclonus dystonia has not been reported, however, this disorder falls under the umbrella of movement disorders which affect thousands worldwide. Myoclonus dystonia results from mutations in the SGCE gene coding for an integral membrane protein found in both neurons and muscle fibers. Those suffering from this disease exhibit symptoms of rapid, jerky movements of the upper limbs (myoclonus), as well as distortion of the body's orientation due to simultaneous activation of agonist and antagonist muscles (dystonia).
Basal ganglia disease is a group of physical problems that occur when the group of nuclei in the brain known as the basal ganglia fail to properly suppress unwanted movements or to properly prime upper motor neuron circuits to initiate motor function. Research indicates that increased output of the basal ganglia inhibits thalamocortical projection neurons. Proper activation or deactivation of these neurons is an integral component for proper movement. If something causes too much basal ganglia output, then the ventral anterior (VA) and ventral lateral (VL) thalamocortical projection neurons become too inhibited, and one cannot initiate voluntary movement. These disorders are known as hypokinetic disorders. However, a disorder leading to abnormally low output of the basal ganglia leads to reduced inhibition, and thus excitation, of the thalamocortical projection neurons which synapse onto the cortex. This situation leads to an inability to suppress unwanted movements. These disorders are known as hyperkinetic disorders.
David Charles is an American neurologist, professor and vice-chair of neurology, and the medical director of Telehealth at Vanderbilt University Medical Center.
Neuromodulation is "the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body". It is carried out to normalize – or modulate – nervous tissue function. Neuromodulation is an evolving therapy that can involve a range of electromagnetic stimuli such as a magnetic field (rTMS), an electric current, or a drug instilled directly in the subdural space. Emerging applications involve targeted introduction of genes or gene regulators and light (optogenetics), and by 2014, these had been at minimum demonstrated in mammalian models, or first-in-human data had been acquired. The most clinical experience has been with electrical stimulation.
Alim Louis Benabid is a French-Algerian emeritus professor, neurosurgeon and member of the French Academy of Sciences, who has had a global impact in the development of deep brain stimulation (DBS) for Parkinson's disease and other movement disorders. He became emeritus professor of biophysics at the Joseph Fourier University in Grenoble in September 2007, and chairman of the board of the Edmond J. Safra Biomedical Research Center in 2009 at Clinatec, a multidisciplinary institute he co-founded in Grenoble that applies nanotechnologies to neurosciences.
Mahlon R. DeLong was an American neurologist and professor at the Medical School of Emory University. His research has advanced the understanding and treatment of Parkinson's disease, dystonia, tremor and other neurological movement disorders.
Michael S. Okun is an American neurologist, neuroscientist and author. He is the co-founder and director of the Norman Fixel Institute for Neurological Diseases at University of Florida Health and is also the chair of the Department of Neurology at the University of Florida and the Medical Director/Advisor for the Parkinson's Foundation. He is the fifth person at the University's College of Medicine to hold the rank of Distinguished Professor.
Adaptive Deep Brain Stimulation (aDBS), also known as Closed Loop Deep Brain stimulation (clDBS), is a neuro-modulatory technique currently under investigation for the treatment of neurodegenerative diseases.
Patricia Limousin is a French neurologist recognized for her contributions to the treatment of movement disorders, particularly through deep brain stimulation (DBS). She earned her medical degree from the University of Grenoble and completed her PhD in neuroscience at the University of Lyon I in 1998, focusing on DBS of the subthalamic nucleus as a treatment for Parkinson's disease.
The first device, Medtronic's Activa Deep Brain Stimulation Therapy System, was approved in 1997 for tremor associated with essential tremor and Parkinson's disease.