Folliculostellate cell

Last updated

A folliculostellate (FS) cell is a type of non-endocrine cell found in the anterior lobe of the pituitary gland. [1]

Contents

Histology and ultrastructure

Rinehart and Farquhar first discovered FS cells through electron microscopy of the anterior pituitary gland. Vila-Porcile named these non-endocrine cells "folliculo-stellate" cells in 1972 due to their stellate (star) shape, and their location lining the lumen of small follicules in the anterior pituitary. [1] Unlike the majority of cells in the anterior pituitary, they are non-endocrine and agranular. [2] They have long cytoplasmic processes which interlock to form a mesh, within which the endocrine cells reside. [2] They typically have a large number of microvilli on their apical side, and contain lysosomes, suggesting phagocytotic activity. [3] Gap junctions can be seen between the FS cells and the adjacent endocrine cells when viewed under an electron microscope. [3]

Staining patterns of anterior pituitary hormones and S-100 protein Rat anterior pituitary.jpg
Staining patterns of anterior pituitary hormones and S-100 protein

Cell properties

Using pituitary slices, studies have been conducted that have illustrated that FS cells are arranged into 3D networks which are able to communicate intracellularly through gap junction-mediated calcium wave propagation. [4] Experiments using two main FS cell lines (TtT/GF and Tpit/F1), have hugely improved our knowledge of the functional relevance of these cells- it has been shown that FS cells play a part in three areas of pituitary use: autocrine/paracrine control of anterior pituitary cell function though the use of cytokines and growth factors, intrapituitary communication among various cell types, and modulation of inflammatory response feedback. [4]

FS cells have similar properties to dendritic cells and macrophages, implying a phagocytic role. [3] FS cells having a main role in moderating the neuro-immune/endocrine regulation of inflammation is backed up by data in conjunction with depicting C3a, C5a receptors (which are the main factors of the innate immune system), secreting IL-6 and MIF (inflammatory cytokines), and controlling the release of these cytokines via anti-inflammatory molecules. [4] Experiments have been carried out to assess the protein markers they express, in order to determine their cell-type and thus exact function in the pituitary. The first marker protein discovered in FS cells was S-100b, which is a calcium-binding protein expressed by glial cells. Some populations of FS cells have also been found to express different cell markers, including GFAP (glial fibrillary acidic protein), cytokeratin, vimentin and fibronectin. [2] S-100 protein and GFAP expression seem to be strongest in early, newly formed FS cells, thus could be important in early FS cell development. [5] GFAP expression implies these cells could be of a neuroectodermal origin, [6] whereas keratin-positive FS cells express epithelial-like characteristics. [7] The study of fibronectin expression in these cells suggests that FS cells may help regulate pituitary function, by interacting with hormone secreting cells through fibronectin. [8] Furthermore, as FS cells express vimentin, an intermediate filament protein marker, this supports the theory that FS cells may be derived from glial neuroectodermic cells. [9]

Due to the different array of markers expressed in these cells, it is difficult to specify their exact cell-type and function. Newer findings propose that pituitary FS cells are made up of groups of cells with disparate immunophenotypes and are not a homogeneous population; however, it still isn't clear if these groups of cells are actually different or are simply cells at varying stages in their development. [4] Multiple FS cell lines have been developed to try to observe the location and function of these cells. mRNA levels of FS cells has been investigated via laser capture microdissection and RT-PCR, so progress is being made in terms of understanding the expression and function of these non-endocrine cells of the pituitary. [2] As they have multiple markers, it is plausible that these cells are a hybrid of several different cell types.

Gap junctions between endocrine cells and FS cells

Although FS cells do not secrete hormones, they influence the functionality of hormone-secreting endocrine cells via gap junctions. FS cells form homologous gap junctions with their adjacent counterparts, but also heterologous gap junctions with hormone-secreting endocrine cells. [10] The gap junctions that exist between adjacent FS cells are used to propagate calcium-mediated signals throughout the pituitary to coordinate the function of excitable endocrine cells distributed throughout the gland. The endocrine-FS cell gap junctions, alongside the FS-FS gap junctions form a cell network that allows information about the physiological environment to be transferred around the pituitary to coordinate its secretory function. [11]

Studies in various small mammals have demonstrated that the number of gap junctions is influenced by several factors, such as puberty, the menstrual cycle and lactation. In the mink, the presence of the connexin-43 protein that is functional in gap junctions, correlates to prolactin secretory demand depending on the breeding season. When prolactin secretion is highest in the spring there is the highest abundance of connexin-43 gap junctions; prolactin secretion and gap junctions are lowest in the winter. [1] Thus demonstrating that the FS-cell network has a role in influencing prolactin secretion. This is consistent with studies in rats which found that gap junctions increased during lactation to facilitate prolactin demand. [3] Additional studies in rats found that the number of gap junctions increases with anterior pituitary maturation, and this increase was prevented by castration in male rats which would prevent sexual maturation, and was restored to normal levels by hormone treatment. Similarly, gap junctions increase during pro-oestrus and oestrus phases of the oestrous cycle, and are decreased by fifty percent during di-oestrus. [3] Evidently, the number of gap junctions is influenced by steroid hormone secretion from the gonads, and FS cells contribute to the pituitary-gonadal feedback loop.

Function as sustentacular cells

Folliculostellate (FS) cells are asserted to be of sustentacular (support) function due to their positioning alongside the endocrine (hormone-secreting) cells of the pituitary gland, implying an either mechanical or chemical support – by forming structural support around the endocrine cells or releasing growth factors and cytokines (cell-signalling molecules. [1] Structural support is exemplified in that FS cells are known to produce metalloprotease inhibitor which may protect the basement membrane and maintain three-dimensional structural support; as well as surrounding endocrine cells, forming close contact to provide the growth factors and cytokines, within the pituitary gland. [12]

Role as signalling mediators for pituitary endocrine cells

Nitric oxide

FS cells are thought to have a role in relaying signals to the hormone secreting endocrine cells of the pituitary gland. Nitric oxide (NO), is reported to be a key modulator of endocrine cell function and has been shown that FS cells (and some endocrine cells) contain neuronal NO synthase, a key NO production enzyme [3] which is responsible for the production of NO from L-arginine. [13] It is thought that FS cells modulate NO production in adjacent endocrine cells via paracrine mechanisms.

Interferon-gamma

Interferon-gamma is a cytokine that acts to inhibit the release of various hormones from the anterior pituitary, [14] FS cells are thought to be vital in mediating this process. [15] This facilitating role of FS cells was identified when studying the anterior pituitary glands of rats, as anterior pituitary samples with few FS cells failed to exhibit the usual inhibitory effects of interferon-gamma.

Glucocorticoids

Glucocorticoid induced suppression of the hypothalamic-pituitary-adrenal (HPA) axis has 2 components. Firstly, within 15 minutes of increased glucocorticoid exposure in the anterior pituitary, there is a reduction in the release of preformed adrenocorticotrophic hormone (ACTH). Secondly, glucocorticoids act at a genomic level by suppressing the translation of ACTH and CRH: this process takes 2 hours after exposure to increased glucocorticoids. [3]

The protein Annexin A1 (ANXA1), found in high quantities in the anterior pituitary gland, is located specifically in the folliculostellate cell. [1] In addition to the anterior pituitary gland, it can also be found in the non-endocrine cells of the hypothalamus. Glucocorticoids act on the folliculostellate cells to increase synthesis of ANXA1 and then stimulate its translocation to the cell surface of the FS cell. This translocation is dependent on protein kinase C. [3] ANXA1 subsequently acts on the corticotrophs of the anterior pituitary, which express ANXA1 G protein coupled receptors, via a paracrine mechanism. The downstream signalling pathway which culminates in reduced ACTH synthesis and/or release remains largely unexplored and as consequence remains poorly understood. [3]

The glucocorticoid/folliculostellate cell relationship also has a role in the production of the excitatory neurotransmitter glutamine. Cells in rat anterior pituitary gland which contain large quantities of the enzyme glutamine synthetase also express the S100 protein which is the marker for folliculostellate cells. After exogenous glucocorticoid administration, the number of these cells increases and the activity of glutamine synthetase also increases. [1] This enzyme is necessary as it allows the CNS to produce glutamine internally. This is essential as the quantity of glutamine transported from the peripheral blood to the CNS cannot satisfy the demands of the CNS for glutamine. [16]

Interleukin-6

The production of the cytokine interleukin-6 (IL-6) could also be said to be a supportive function, as the IL-6 is a mediator in communication between the endocrine and immune system. IL-6 production by FS cells induces hormone production from endocrine cells, which can then activate the immune system. [1]

Potential function as stem cells

There has been some suggesting evidence through numerous studies that FS cells may act as pituitary stem cells (SC). Indirect evidence from goat as well as rat cells has led to suggestions that the S100β+ cells may act as intermediate cells during the formation of adult pituitary cells. Nonetheless, more research needs to be done to clarify the potential stem cell properties of FS cells. [17]

Related Research Articles

<span class="mw-page-title-main">Endocrine system</span> Hormone-producing glands of a body

The endocrine system is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant organs. In vertebrates, the hypothalamus is the neural control center for all endocrine systems.

<span class="mw-page-title-main">Pituitary gland</span> Endocrine gland at the base of the brain

The pituitary gland is an endocrine gland in vertebrates. In humans, the pituitary gland is located at the base of the brain, protruding off the bottom of the hypothalamus. The human pituitary gland is oval shaped, about the size of a chickpea, and weighs 0.5 grams (0.018 oz) on average.

<span class="mw-page-title-main">Adrenocorticotropic hormone</span> Pituitary hormone

Adrenocorticotropic hormone is a polypeptide tropic hormone produced by and secreted by the anterior pituitary gland. It is also used as a medication and diagnostic agent. ACTH is an important component of the hypothalamic-pituitary-adrenal axis and is often produced in response to biological stress. Its principal effects are increased production and release of cortisol and androgens by the zona fasiculata and zona reticularis, respectively. ACTH is also related to the circadian rhythm in many organisms.

<span class="mw-page-title-main">Hypothalamus</span> Area of the brain below the thalamus

The hypothalamus is a small part of the brain that contains a number of nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamus is located below the thalamus and is part of the limbic system. It forms the ventral part of the diencephalon. All vertebrate brains contain a hypothalamus. In humans, it is the size of an almond.

<span class="mw-page-title-main">Prolactin</span> Protein family and hormone

Prolactin (PRL), also known as lactotropin and mammotropin, is a protein best known for its role in enabling mammals to produce milk. It is influential in over 300 separate processes in various vertebrates, including humans. Prolactin is secreted from the pituitary gland in response to eating, mating, estrogen treatment, ovulation and nursing. It is secreted heavily in pulses in between these events. Prolactin plays an essential role in metabolism, regulation of the immune system and pancreatic development.

<span class="mw-page-title-main">Anterior pituitary</span> Anterior lobe of the pituitary gland

A major organ of the endocrine system, the anterior pituitary is the glandular, anterior lobe that together with the posterior lobe makes up the pituitary gland (hypophysis) which, in humans, is located at the base of the brain, protruding off the bottom of the hypothalamus.

<span class="mw-page-title-main">Posterior pituitary</span> Posterior lobe of the pituitary gland

The posterior pituitary is the posterior lobe of the pituitary gland which is part of the endocrine system. The posterior pituitary is not glandular as is the anterior pituitary. Instead, it is largely a collection of axonal projections from the hypothalamus that terminate behind the anterior pituitary, and serve as a site for the secretion of neurohypophysial hormones directly into the blood. The hypothalamic–neurohypophyseal system is composed of the hypothalamus, posterior pituitary, and these axonal projections.

A lactotropic cell is a cell in the anterior pituitary which produces prolactin in response to hormonal signals including dopamine, thyrotropin-releasing hormone and estrogen, which are stimulatory. Prolactin is responsible for actions needed for body homeostasis, the development of breasts, and for lactation. The inhibitory effects of dopamine override the stimulatory effects of TRH in non-pregnant, non-lactating sexually mature females. Depending on the sex of the individual, lactotropic cells account for 20% - 50% of all cells in the anterior pituitary gland. The inhibitory effects of dopamine override the stimulatory effects of TRH in non-pregnant, non-lactating sexually mature females. Other regulators include oxytocin and progesterone.

<span class="mw-page-title-main">Arcuate nucleus</span>

The arcuate nucleus of the hypothalamus is an aggregation of neurons in the mediobasal hypothalamus, adjacent to the third ventricle and the median eminence. The arcuate nucleus includes several important and diverse populations of neurons that help mediate different neuroendocrine and physiological functions, including neuroendocrine neurons, centrally projecting neurons, and astrocytes. The populations of neurons found in the arcuate nucleus are based on the hormones they secrete or interact with and are responsible for hypothalamic function, such as regulating hormones released from the pituitary gland or secreting their own hormones. Neurons in this region are also responsible for integrating information and providing inputs to other nuclei in the hypothalamus or inputs to areas outside this region of the brain. These neurons, generated from the ventral part of the periventricular epithelium during embryonic development, locate dorsally in the hypothalamus, becoming part of the ventromedial hypothalamic region. The function of the arcuate nucleus relies on its diversity of neurons, but its central role is involved in homeostasis. The arcuate nucleus provides many physiological roles involved in feeding, metabolism, fertility, and cardiovascular regulation.

<span class="mw-page-title-main">Pituitary adenoma</span> Human disease

Pituitary adenomas are tumors that occur in the pituitary gland. Most pituitary tumors are benign, approximately 35% are invasive and just 0.1% to 0.2% are carcinomas. Pituitary adenomas represent from 10% to 25% of all intracranial neoplasms and the estimated prevalence rate in the general population is approximately 17%.

<span class="mw-page-title-main">Endocrine gland</span> Glands of the endocrine system that secrete hormones to blood

Endocrine glands are ductless glands of the endocrine system that secrete their products, hormones, directly into the blood. The major glands of the endocrine system include the pineal gland, pituitary gland, pancreas, ovaries, testicles, thyroid gland, parathyroid gland, hypothalamus and adrenal glands. The hypothalamus and pituitary glands are neuroendocrine organs.

Neuroendocrinology is the branch of biology which studies the interaction between the nervous system and the endocrine system; i.e. how the brain regulates the hormonal activity in the body. The nervous and endocrine systems often act together in a process called neuroendocrine integration, to regulate the physiological processes of the human body. Neuroendocrinology arose from the recognition that the brain, especially the hypothalamus, controls secretion of pituitary gland hormones, and has subsequently expanded to investigate numerous interconnections of the endocrine and nervous systems.

<span class="mw-page-title-main">Multiple endocrine neoplasia type 1</span> Medical condition

Multiple endocrine neoplasia type 1 (MEN-1) is one of a group of disorders, the multiple endocrine neoplasias, that affect the endocrine system through development of neoplastic lesions in pituitary, parathyroid gland and pancreas. Individuals suffering from this disorder are prone to developing multiple endocrine and nonendocrine tumors. It was first described by Paul Wermer in 1954.

The prolactin receptor (PRLR) is a type I cytokine receptor encoded in humans by the PRLR gene on chromosome 5p13-14. It is the receptor for prolactin (PRL). The PRLR can also bind to and be activated by growth hormone (GH) and human placental lactogen (hPL). The PRLR is expressed in the mammary glands, pituitary gland, and other tissues. It plays an important role in lobuloalveolar development of the mammary glands during pregnancy and in lactation.

<span class="mw-page-title-main">Hypophyseal portal system</span> System of blood vessels

The hypophyseal portal system is a system of blood vessels in the microcirculation at the base of the brain, connecting the hypothalamus with the anterior pituitary. Its main function is to quickly transport and exchange hormones between the hypothalamus arcuate nucleus and anterior pituitary gland. The capillaries in the portal system are fenestrated which allows a rapid exchange between the hypothalamus and the pituitary. The main hormones transported by the system include gonadotropin-releasing hormone, corticotropin-releasing hormone, growth hormone–releasing hormone, and thyrotropin-releasing hormone.

Stress hormones are secreted by endocrine glands to modify one's internal environment during the times of stress. By performing various functions such as mobilizing energy sources, increasing heart rate, and downregulating metabolic processes which are not immediately necessary, stress hormones promote the survival of the organism. The secretions of some hormones are also downplayed during stress. Stress hormones include, but are not limited to:

Non-tropic hormones are hormones that directly stimulate target cells to induce effects. This differs from the tropic hormones, which act on another endocrine gland. Non-tropic hormones are those that act directly on targeted tissues or cells, and not on other endocrine gland to stimulate release of other hormones. Many hormones act in a chain reaction. Tropic hormones usually act in the beginning of the reaction stimulating other endocrine gland to eventually release non-tropic hormones. These are the ones that act in the end of the chain reaction on other cells that are not part of other endocrine gland. The Hypothalamic-pituitary-adrenal axis is a perfect example of this chain reaction. The reaction begins in the hypothalamus with a release of corticotropin-releasing hormone/factor. This stimulates the anterior pituitary and causes it to release Adrenocorticotropic hormone to the adrenal glands. Lastly, cortisol (non-tropic) is secreted from the adrenal glands and goes into the bloodstream where it can have more widespread effects on organs and tissues. Since cortisol is what finally reaches other tissues in the body, it is a non-tropic hormone. CRH and ACTH are tropic hormones because they act on the anterior pituitary gland and adrenal glands, respectively, both of which are endocrine glands. Non-tropic hormones are thus often the last piece of a larger process and chain of hormone secretion. Both tropic and non-tropic hormones are necessary for proper endocrine function. For example, if ACTH is inhibited, cortisol can no longer be released because the chain reaction has been interrupted. Some examples of non-tropic hormones are:

Hypothalamic–pituitary hormones are hormones that are produced by the hypothalamus and pituitary gland. Although the organs in which they are produced are relatively small, the effects of these hormones cascade throughout the body. They can be classified as a hypothalamic–pituitary axis of which the adrenal, gonadal, thyroid, somatotropic, and prolactin axes are branches.

Hypogonadotropic hypogonadism (HH), is due to problems with either the hypothalamus or pituitary gland affecting the hypothalamic-pituitary-gonadal axis. Hypothalamic disorders result from a deficiency in the release of gonadotropic releasing hormone (GnRH), while pituitary gland disorders are due to a deficiency in the release of gonadotropins from the anterior pituitary. GnRH is the central regulator in reproductive function and sexual development via the HPG axis. GnRH is released by GnRH neurons, which are hypothalamic neuroendocrine cells, into the hypophyseal portal system acting on gonadotrophs in the anterior pituitary. The release of gonadotropins, LH and FSH, act on the gonads for the development and maintenance of proper adult reproductive physiology. LH acts on Leydig cells in the male testes and theca cells in the female. FSH acts on Sertoli cells in the male and follicular cells in the female. Combined this causes the secretion of gonadal sex steroids and the initiation of folliculogenesis and spermatogenesis. The production of sex steroids forms a negative feedback loop acting on both the anterior pituitary and hypothalamus causing a pulsatile secretion of GnRH. GnRH neurons lack sex steroid receptors and mediators such as kisspeptin stimulate GnRH neurons for pulsatile secretion of GnRH.

Pulsatile secretion is a biochemical phenomenon observed in a wide variety of cell and tissue types, in which chemical products are secreted in a regular temporal pattern. The most common cellular products observed to be released in this manner are intercellular signaling molecules such as hormones or neurotransmitters. Examples of hormones that are secreted pulsatilely include insulin, thyrotropin, TRH, gonadotropin-releasing hormone (GnRH) and growth hormone (GH). In the nervous system, pulsatility is observed in oscillatory activity from central pattern generators. In the heart, pacemakers are able to work and secrete in a pulsatile manner. A pulsatile secretion pattern is critical to the function of many hormones in order to maintain the delicate homeostatic balance necessary for essential life processes, such as development and reproduction. Variations of the concentration in a certain frequency can be critical to hormone function, as evidenced by the case of GnRH agonists, which cause functional inhibition of the receptor for GnRH due to profound downregulation in response to constant (tonic) stimulation. Pulsatility may function to sensitize target tissues to the hormone of interest and upregulate receptors, leading to improved responses. This heightened response may have served to improve the animal's fitness in its environment and promote its evolutionary retention.

References

  1. 1 2 3 4 5 6 7 Devnath, S.; Inoue, K. (2008-06-01). "An Insight to Pituitary Folliculo-Stellate Cells". Journal of Neuroendocrinology. 20 (6): 687–691. doi: 10.1111/j.1365-2826.2008.01716.x . ISSN   1365-2826. PMID   18601690. S2CID   25166056.
  2. 1 2 3 4 Fauquier, Teddy; Guérineau, Nathalie C.; McKinney, R. Anne; Bauer, Karl; Mollard, Patrice (2001-07-17). "Folliculostellate cell network: A route for long-distance communication in the anterior pituitary". Proceedings of the National Academy of Sciences. 98 (15): 8891–8896. Bibcode:2001PNAS...98.8891F. doi: 10.1073/pnas.151339598 . ISSN   0027-8424. PMC   37531 . PMID   11438713.
  3. 1 2 3 4 5 6 7 8 9 Inoue, K.; Couch, E. F.; Takano, K.; Ogawa, S. (August 1999). "The structure and function of folliculo-stellate cells in the anterior pituitary gland". Archives of Histology and Cytology. 62 (3): 205–218. doi: 10.1679/aohc.62.205 . ISSN   0914-9465. PMID   10495875.
  4. 1 2 3 4 Rees, DA (2005-11-07). "Folliculostellate cells: what are they?". Endocrine Abstracts. 10. Retrieved 28 September 2017.
  5. Horvath, Eva; Kovacs, Kalman (2002-01-01). "Folliculo-stellate Cells of the Human Pituitary: A Type of Adult Stem Cell?". Ultrastructural Pathology. 26 (4): 219–228. doi:10.1080/01913120290104476. ISSN   0191-3123. PMID   12227947. S2CID   23685490.
  6. Velasco, M. E.; Roessmann, U.; Gambetti, P. (March 1982). "The presence of glial fibrillary acidic protein in the human pituitary gland". Journal of Neuropathology and Experimental Neurology. 41 (2): 150–163. doi:10.1097/00005072-198203000-00005. ISSN   0022-3069. PMID   7062085. S2CID   21985071.
  7. Shimada, T. (February 1992). "Immunohistochemical localization of keratin in bull, goat, and sheep anterior pituitary glands". Cell and Tissue Research. 267 (2): 251–260. doi:10.1007/bf00302962. ISSN   0302-766X. PMID   1376215. S2CID   155505.
  8. Liu, Y. C.; Tanaka, S.; Inoue, K.; Kurosumi, K. (1989). "Localization of fibronectin in the folliculo-stellate cells of the rat anterior pituitary by the double bridge peroxidase-antiperoxidase method". Histochemistry. 92 (1): 43–45. doi:10.1007/bf00495014. ISSN   0301-5564. PMID   2670846. S2CID   33644735.
  9. Marin, F.; Boya, J.; Lopez-Carbonell, A. (1989). "Immunocytochemical localization of vimentin in stellate cells (folliculo-stellate cells) of the rat, cat and rabbit pituitary pars distalis". Anatomy and Embryology. 179 (5): 491–495. doi:10.1007/bf00319592. ISSN   0340-2061. PMID   2471422. S2CID   6380770.
  10. Morand, I.; Fonlupt, P.; Guerrier, A.; Trouillas, J.; Calle, A.; Remy, C.; Rousset, B.; Munari-Silem, Y. (August 1996). "Cell-to-cell communication in the anterior pituitary: evidence for gap junction-mediated exchanges between endocrine cells and folliculostellate cells". Endocrinology. 137 (8): 3356–3367. doi: 10.1210/endo.137.8.8754762 . ISSN   0013-7227. PMID   8754762.
  11. Fauquier, T.; Guérineau, N. C.; McKinney, R. A.; Bauer, K.; Mollard, P. (2001). "Folliculostellate cell network: A route for long-distance communication in the anterior pituitary". PNAS. 98 (15): 8891–8896. Bibcode:2001PNAS...98.8891F. doi: 10.1073/pnas.151339598 . PMC   37531 . PMID   11438713 via PMC.
  12. Inoue, K.; Mogi, C.; Ogawa, S.; Tomida, M.; Miyai, S. (April 2002). "Are folliculo-stellate cells in the anterior pituitary gland supportive cells or organ-specific stem cells?". Archives of Physiology and Biochemistry. 110 (1–2): 50–53. doi:10.1076/apab.110.1.50.911. ISSN   1381-3455. PMID   11935400. S2CID   38521204.
  13. Knowles, R. G.; Moncada, S. (1994-03-01). "Nitric oxide synthases in mammals". The Biochemical Journal. 298 (2): 249–258. doi:10.1042/bj2980249. ISSN   0264-6021. PMC   1137932 . PMID   7510950.
  14. Vankelecom, H.; Carmeliet, P.; Heremans, H.; Van Damme, J.; Dijkmans, R.; Billiau, A.; Denef, C. (June 1990). "Interferon-gamma inhibits stimulated adrenocorticotropin, prolactin, and growth hormone secretion in normal rat anterior pituitary cell cultures". Endocrinology. 126 (6): 2919–2926. doi:10.1210/endo-126-6-2919. ISSN   0013-7227. PMID   2161739.
  15. Vankelecom, H.; Andries, M.; Billiau, A.; Denef, C. (June 1992). "Evidence that folliculo-stellate cells mediate the inhibitory effect of interferon-gamma on hormone secretion in rat anterior pituitary cell cultures". Endocrinology. 130 (6): 3537–3546. doi:10.1210/endo.130.6.1317788. ISSN   0013-7227. PMID   1317788.
  16. Albrecht, Jan (2007). "Glutamine in the central nervous system: function and dysfunction". Frontiers in Bioscience. 12 (1): 332–43. doi: 10.2741/2067 . PMID   17127302.
  17. "KU Leuven". perswww.kuleuven.be.