Gonadotropic cell | |
---|---|
Details | |
System | Reproductive system |
Location | Anterior pituitary gland |
Function | Gonadotropin secretion (follicle-stimulating hormone (FSH) and luteinizing hormone (LH)) |
Identifiers | |
MeSH | D052681 |
TH | H3.08.02.2.00004 |
FMA | 83100 |
Anatomical terms of microanatomy |
Gonadotropic cells (also known as gonadotropes, gonadotrophs, delta cells, or delta basophils) are endocrine cells in the anterior pituitary that produce gonadotropins. More specifically, gonadotrophs produce and secrete glycoprotein polypeptide hormones, such as the follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which are released due to the positive input of gonadotropin-releasing hormone (GnRH). [1] These gonadotropins are essential in the development and maintenance of reproductive function in mammals. This control of the reproductive system is coordinated by the electrical activity and signaling pathways of gonadotrophs as well as the tight regulation of gonadotropic cells by both sex steroids and paracrine factors. [2]
During embryonic development, the anterior and posterior pituitary merge due to regulated cell-to-cell interactions, signaling pathways, and numerous transcription factors. Of the pituitary endocrine cells, the gonadotropic cells are the last to form and become functional. It has been found through studies with zebrafish that glycoprotein 𝞪-subunit (gpa) and thyroid-stimulating hormone beta (tshb) expressing cells are precursors for gonadotropes and thyrotropes. Even further, the genes involved in the final differentiation of these precursors into gonadotropes are sine oculus 1 (six1), eyes absent homolog 1 (eya1), steroidogenic factor 1 (sf1), and paired-like homeodomain 1 (pitx1). [3]
Once gonadotropes are fully developed and functional, these cells compose approximately 15-20% of the anterior pituitary, and gonadotropic cells are larger than other cells of the anterior lobe. Gonadotropes are usually near capillaries and in close proximity to lactotrophs, which suggests a possible paracrine interaction between the two pituitary endocrine cells. In electron micrographs of gonadotropic cells, the rough endoplasmic reticulum is prominent and forms dilated stacks, and the Golgi apparatus are also clearly visible. Cytoplasmic granules within gonadotropic cells are responsible for producing FSH and LH. In most gonadotrophs, the cytoplasm contains both FSH and LH, but there are some gonadotrophs that contain only one of the two hormones. Therefore, there are two different granule populations in gonadotropes, one type being 150-250 nm in diameter and the other being 350-450 nm in diameter. [4] Gonadotropes are usually described as globular and basophilic due to the cells’ ability to absorb dyes that appear blue or purple under the microscope due to the cytoplasmic granules that have a high affinity for basic stains. [5]
Gonadotrophs contain numerous voltage-gated sodium (Na), calcium (Ca), potassium (K), and chloride (Cl) channels in the plasma membrane, and these channels account for spontaneous and receptor-controlled electrical and Ca2+ signaling. The presence of these voltage-gated channels makes gonadotrophs electrically excitable cells, meaning the cells are capable of propagating action potentials either spontaneously or by stimulation. The resting membrane potential of gonadotrophs is generally -60 to -50 mV, but when depolarization of the plasma membrane surpasses the threshold voltage, the gonadotrophs fire tall and narrow action potentials with amplitudes of more than 60 mV. This electrical activity of gonadotrophs differs from other pituitary cells because other cell types usually exhibit periodic depolarized potentials with smaller amplitude peaks. In gonadotrophs, the sodium ion channels work simultaneously with calcium ion channels to propagate these action potentials, or calcium channels can be solely responsible for the depolarization of gonadotrophs. [6]
One factor that has an important effect on this electrical activity of gonadotrophs is the gonadotropin-releasing hormone (GnRH). GnRH is a hormone released by the hypothalamus, and it is responsible for signaling gonadotrophs to release gonadotropins FSH and LH. GnRH binds to gonadotropin-releasing hormone receptors (GnRHR), which is a G-protein coupled receptor, and signals the oscillation of calcium that hyperpolarizes gonadotropic cell membranes. [6] This oscillation of calcium ions occurs through the resultant signaling cascade of the GnRH binding to the GnRHR in the plasma membrane of the gonadotroph. The G-protein associated with the GnRHR is activated by the binding of GnRH, which results in increased phospholipase C (PLC) activity in the plasma membrane. PLC cleaves phosphatidylinositol-4,5-biophosphate (PIP2) into inositol triphosphate (IP3) and diacylglycerol (DAG) signals. DAG activates protein kinase C (PKC), which phosphorylates proteins, and IP3 binds to IP3 receptors on the membrane of the endoplasmic reticulum (ER). This binding results in the release of intracellular calcium ions stored within the ER. Therefore, this increase in calcium ions signals the synthesis of secretion of FSH and LH in gonadotrophs. [7] Overall, the fluctuation of calcium levels that is activated by the electrical activity and the signaling pathway within gonadotropic cells collectively contribute to the synthesis and release of gonadotropins that will serve an endocrine function in the reproductive system.
The endocrine function of gonadotrophs is derived from the effect of gonadotropins on the reproductive system. The gonadotropins produced by gonadotropic cells are FSH and LH, which are dimeric pituitary glycoprotein hormones with a common alpha subunit and distinct beta subunit that confers biological activity of the hormones. These hormones are synthesized in the ER of gonadotropic cells and then passed through the Golgi apparatus. After modification and packaging within the Golgi complex, the hormones are delivered to the plasma membrane through constitutive or regulated secretory pathways. The regulated pathway involves the fusion of the secretory vesicles containing FSH and LH to the gonadotroph membrane, and the vesicle is arrested waiting for specific signals, such as increased calcium levels from electrical activity and signaling pathways, that activate secretion of the hormones. [8] The gonadotropins FSH and LH regulate the development of follicles, also known as folliculogenesis, in females, and the development of sperm in males. More specifically, the released FSH acts on ovarian granulosa and testicular Sertoli cells, while LH acts on ovarian theca and testicular Leydig cells. [9] [10] The release of these hormones are directly signaled by the pulsing secretion of GnRH. For example, the low frequency GnRH pulses lead to the release of FSH and the high-frequency of GnRH pulses lead to the release of LH. Therefore, the controlled release of FSH and LH from gonadotrophs allows for precise control of gonadal function. [1]
Gonadotroph release of gonadotropins is highly regulated and fluctuates with physiological conditions. For example, in the presence of gonadotropins, ovaries produce and secrete the hormone estradiol. Increased levels of estradiol regulate the surge in LH levels through a negative feedback mechanism during the mid-cycle of the menstrual cycle. This indicates that LH released from gonadotrophs stimulates the production of estradiol; however, when there is a drastic increase in estradiol production, estradiol will regulate LH production by preventing gonadotrophs from releasing more LH until estradiol is needed again. In males, LH stimulates the production of testosterone by Leydig cells in testis and FSH controls spermatogenesis. Testosterone will also provide negative feedback to gonadotrophs and regulate its own production by acting on the hypothalamus and anterior pituitary. The negative feedback provided by these sex steroids (estradiol and testosterone) lead to the inhibition of hypothalamic secretion of GnRH, which consequently will inhibit the release of LH from gonadotropic cells. [2] FSH is selectively inhibited by paracrine factors, such as inhibin. Inhibin A is secreted from ovarian granulosa cells in females, and inhibin B is secreted by testicular Sertoli cells in males. Similar to the negative feedback of the sex steroids, the inhibin will provide feedback to the pituitary gonadotrophs to reduce secretion of FSH by inhibiting GnRH from activating the release of gonadotropins. [9] The integration of different regulatory signals by gonadotropes results in the coordinated control of production and secretion of gonadotropins to respond and control sexual maturation and reproductive functions. [11]
Luteinizing hormone is a hormone produced by gonadotropic cells in the anterior pituitary gland. The production of LH is regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In females, an acute rise of LH known as an LH surge, triggers ovulation and development of the corpus luteum. In males, where LH had also been called interstitial cell–stimulating hormone (ICSH), it stimulates Leydig cell production of testosterone. It acts synergistically with follicle-stimulating hormone (FSH).
Follicle-stimulating hormone (FSH) is a gonadotropin, a glycoprotein polypeptide hormone. FSH is synthesized and secreted by the gonadotropic cells of the anterior pituitary gland and regulates the development, growth, pubertal maturation, and reproductive processes of the body. FSH and luteinizing hormone (LH) work together in the reproductive system.
The anterior pituitary is a major organ of the endocrine system. The anterior pituitary is the glandular, anterior lobe that together with the makes up the pituitary gland (hypophysis) which, in humans, is located at the base of the brain, protruding off the bottom of the hypothalamus.
Gonadotropin-releasing hormone (GnRH) is a releasing hormone responsible for the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary. GnRH is a tropic peptide hormone synthesized and released from GnRH neurons within the hypothalamus. The peptide belongs to gonadotropin-releasing hormone family. It constitutes the initial step in the hypothalamic–pituitary–gonadal axis.
Gonadotropins are glycoprotein hormones secreted by gonadotropic cells of the anterior pituitary of vertebrates. This family includes the mammalian hormones follicle-stimulating hormone (FSH) and luteinizing hormone (LH), the placental/chorionic gonadotropins, human chorionic gonadotropin (hCG) and equine chorionic gonadotropin (eCG), as well as at least two forms of fish gonadotropins. These hormones are central to the complex endocrine system that regulates normal growth, sexual development, and reproductive function. LH and FSH are secreted by the anterior pituitary gland, while hCG and eCG are secreted by the placenta in pregnant women and mares, respectively. The gonadotropins act on the gonads, controlling gamete and sex hormone production.
Gonadarche refers to the earliest gonadal changes of puberty. In response to pituitary gonadotropins, the ovaries in females and the testes in males begin to grow and increase the production of the sex steroids, especially estradiol and testosterone. The ovary and testis have receptors, follicle cells and leydig cells, respectively, where gonadotropins bind to stimulate the maturation of the gonads and secretion of estrogen and testosterone. Certain disorders can result in changes to timing or nature of these processes.
The hypothalamic–pituitary–gonadal axis refers to the hypothalamus, pituitary gland, and gonadal glands as if these individual endocrine glands were a single entity. Because these glands often act in concert, physiologists and endocrinologists find it convenient and descriptive to speak of them as a single system.
The follicular phase, also known as the preovulatory phase or proliferative phase, is the phase of the estrous cycle during which follicles in the ovary mature from primary follicle to a fully mature graafian follicle. It ends with ovulation. The main hormones controlling this stage are secretion of gonadotropin-releasing hormones, which are follicle-stimulating hormones and luteinising hormones. They are released by pulsatile secretion. The duration of the follicular phase can differ depending on the length of the menstrual cycle, while the luteal phase is usually stable, does not really change and lasts 14 days.
The gonadotropin-releasing hormone receptor (GnRHR), also known as the luteinizing hormone releasing hormone receptor (LHRHR), is a member of the seven-transmembrane, G-protein coupled receptor (GPCR) family. It is the receptor of gonadotropin-releasing hormone (GnRH). Agonist binding to the GnRH receptor activates the Gq/11 family of heterotrimeric G proteins. The GnRHR is expressed on the surface of pituitary gonadotrope cells as well as lymphocytes, breast, ovary, and prostate.
Kisspeptins are proteins encoded by the KISS1 gene in humans. Kisspeptins are ligands of the G-protein coupled receptor, GPR54. Kiss1 was originally identified as a human metastasis suppressor gene that has the ability to suppress melanoma and breast cancer metastasis. Kisspeptin-GPR54 signaling has an important role in initiating secretion of gonadotropin-releasing hormone (GnRH) at puberty, the extent of which is an area of ongoing research. Gonadotropin-releasing hormone is released from the hypothalamus to act on the anterior pituitary triggering the release of luteinizing hormone (LH), and follicle stimulating hormone (FSH). These gonadotropic hormones lead to sexual maturation and gametogenesis. Disrupting GPR54 signaling can cause hypogonadotrophic hypogonadism in rodents and humans. The Kiss1 gene is located on chromosome 1. It is transcribed in the brain, adrenal gland, and pancreas.
The theca folliculi comprise a layer of the ovarian follicles. They appear as the follicles become secondary follicles.
Gonadotropin-releasing hormone receptor is a protein that in humans is encoded by the GNRHR gene.
Hypothalamic–pituitary hormones are hormones that are produced by the hypothalamus and pituitary gland. Although the organs in which they are produced are relatively small, the effects of these hormones cascade throughout the body. They can be classified as a hypothalamic–pituitary axis of which the adrenal, gonadal, thyroid, somatotropic, and prolactin axes are branches.
Gonadotropin-releasing hormone (GnRH) insensitivity also known as Isolated gonadotropin-releasing hormone (GnRH)deficiency (IGD) is a rare autosomal recessive genetic and endocrine syndrome which is characterized by inactivating mutations of the gonadotropin-releasing hormone receptor (GnRHR) and thus an insensitivity of the receptor to gonadotropin-releasing hormone (GnRH), resulting in a partial or complete loss of the ability of the gonads to synthesize the sex hormones. The condition manifests itself as isolated hypogonadotropic hypogonadism (IHH), presenting with symptoms such as delayed, reduced, or absent puberty, low or complete lack of libido, and infertility, and is the predominant cause of IHH when it does not present alongside anosmia.
Hypogonadotropic hypogonadism (HH), is due to problems with either the hypothalamus or pituitary gland affecting the hypothalamic-pituitary-gonadal axis. Hypothalamic disorders result from a deficiency in the release of gonadotropic releasing hormone (GnRH), while pituitary gland disorders are due to a deficiency in the release of gonadotropins from the anterior pituitary. GnRH is the central regulator in reproductive function and sexual development via the HPG axis. GnRH is released by GnRH neurons, which are hypothalamic neuroendocrine cells, into the hypophyseal portal system acting on gonadotrophs in the anterior pituitary. The release of gonadotropins, LH and FSH, act on the gonads for the development and maintenance of proper adult reproductive physiology. LH acts on Leydig cells in the male testes and theca cells in the female. FSH acts on Sertoli cells in the male and follicular cells in the female. Combined this causes the secretion of gonadal sex steroids and the initiation of folliculogenesis and spermatogenesis. The production of sex steroids forms a negative feedback loop acting on both the anterior pituitary and hypothalamus causing a pulsatile secretion of GnRH. GnRH neurons lack sex steroid receptors and mediators such as kisspeptin stimulate GnRH neurons for pulsatile secretion of GnRH.
GnRH neurons, or gonadotropin-releasing hormone expressing neurons, are the cells in the hypothalamic infundibular nucleus in the brain that control the release of reproductive hormones from the pituitary. These brain cells control reproduction by secreting GnRH into the hypophyseal portal capillary bloodstream, so are sometimes referred to as "sex neurons". This small capillary network carries GnRH to the anterior pituitary, causing release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) into the wider bloodstream. When GnRH neurons change their pattern of release from the juvenile to the adult pattern of GnRH secretion, puberty is initiated. Failure of GnRH neurons to form the proper connections, or failure to successfully stimulate the pituitary with GnRH, means that puberty is not initiated. These disruptions to the GnRH system cause reproductive disorders like hypogonadotropic hypogonadism or Kallmann Syndrome.
The hormone of gonadotropins secreted by the anterior hypophyse gland effects on the gonads and play a crucial role in the process of gonadal development and function in vertebrates. In birds and mammals, luteinizinghormone (LH) regulates sex steroid production as well as ovulation, whereas follicle stimulating hormone (FSH) promotes spermatogenesis and ovarian follicle maturation. Since the isolation of gonadotropin-releasing hormone (GnRH), a hypothalamic decapeptide, from mammalian brain in the early 1970s, several other GnRHs have been identified in the brains of other vertebrates. Based on extensive studies in vertebrates, it was generally believed that GnRH is the only hypothalamic regulator of the release of pituitary gonadotropins. Some neurochemicals and peripheral hormones [e.g.gamma-aminobutyric acid (GABA), opiates, gonadal sex steroids, inhibin] can modulate gonadotropin release, but GnRH was considered to have no hypothalamic antagonist.
Pulsatile secretion is a biochemical phenomenon observed in a wide variety of cell and tissue types, in which chemical products are secreted in a regular temporal pattern. The most common cellular products observed to be released in this manner are intercellular signaling molecules such as hormones or neurotransmitters. Examples of hormones that are secreted pulsatilely include insulin, thyrotropin, TRH, gonadotropin-releasing hormone (GnRH) and growth hormone (GH). In the nervous system, pulsatility is observed in oscillatory activity from central pattern generators. In the heart, pacemakers are able to work and secrete in a pulsatile manner. A pulsatile secretion pattern is critical to the function of many hormones in order to maintain the delicate homeostatic balance necessary for essential life processes, such as development and reproduction. Variations of the concentration in a certain frequency can be critical to hormone function, as evidenced by the case of GnRH agonists, which cause functional inhibition of the receptor for GnRH due to profound downregulation in response to constant (tonic) stimulation. Pulsatility may function to sensitize target tissues to the hormone of interest and upregulate receptors, leading to improved responses. This heightened response may have served to improve the animal's fitness in its environment and promote its evolutionary retention.
Gonadotropin surge-attenuating factor (GnSAF) is a nonsteroidal ovarian hormone produced by the granulosa cells of small antral ovarian follicles in females. GnSAF is involved in regulating the secretion of luteinizing hormone (LH) from the anterior pituitary and the ovarian cycle. During the early to mid-follicular phase of the ovarian cycle, GnSAF acts on the anterior pituitary to attenuate LH release, limiting the secretion of LH to only basal levels. At the transition between follicular and luteal phase, GnSAF bioactivity declines sufficiently to permit LH secretion above basal levels, resulting in the mid-cycle LH surge that initiates ovulation. In normally ovulating women, the LH surge only occurs when the oocyte is mature and ready for extrusion. GnSAF bioactivity is responsible for the synchronised, biphasic nature of LH secretion.
Kisspeptin, neurokinin B, and dynorphin (KNDy) neurons are neurons in the hypothalamus of the brain that are central to the hormonal control of reproduction.