Gastrointestinal physiology

Last updated

Gastrointestinal physiology is the branch of human physiology that addresses the physical function of the gastrointestinal (GI) tract. The function of the GI tract is to process ingested food by mechanical and chemical means, extract nutrients and excrete waste products. The GI tract is composed of the alimentary canal, that runs from the mouth to the anus, as well as the associated glands, chemicals, hormones, and enzymes that assist in digestion. The major processes that occur in the GI tract are: motility, secretion, regulation, digestion and circulation. The proper function and coordination of these processes are vital for maintaining good health by providing for the effective digestion and uptake of nutrients. [1] [2]

Contents

Motility

The gastrointestinal tract generates motility using smooth muscle subunits linked by gap junctions. These subunits fire spontaneously in either a tonic or a phasic fashion. Tonic contractions are those contractions that are maintained from several minutes up to hours at a time. These occur in the sphincters of the tract, as well as in the anterior stomach. The other type of contractions, called phasic contractions, consist of brief periods of both relaxation and contraction, occurring in the posterior stomach and the small intestine, and are carried out by the muscularis externa.

Motility may be overactive (hypermotility), leading to diarrhea or vomiting, or underactive (hypomotility), leading to constipation or vomiting; either may cause abdominal pain. [3]

Stimulation

The stimulation for these contractions likely originates in modified smooth muscle cells called interstitial cells of Cajal. These cells cause spontaneous cycles of slow wave potentials that can cause action potentials in smooth muscle cells. They are associated with the contractile smooth muscle via gap junctions. These slow wave potentials must reach a threshold level for the action potential to occur, whereupon Ca2+ channels on the smooth muscle open and an action potential occurs. As the contraction is graded based upon how much Ca2+ enters the cell, the longer the duration of slow wave, the more action potentials occur. This, in turn, results in greater contraction force from the smooth muscle. Both amplitude and duration of the slow waves can be modified based upon the presence of neurotransmitters, hormones or other paracrine signaling. The number of slow wave potentials per minute varies based upon the location in the digestive tract. This number ranges from 3 waves/min in the stomach to 12 waves/min in the intestines. [4]

Contraction patterns

The peristalsis and segmentation, detailed below and pendular movement are famous examples of distinct patterns of GI contraction [5] . Occurring between meals, the migrating motor complex is a series of peristaltic wave cycles in distinct phases starting with relaxation, followed by an increasing level of activity to a peak level of peristaltic activity lasting for 5–15 minutes. [6] This cycle repeats every 1.5–2 hours but is interrupted by food ingestion. The role of this process is likely to clean excess bacteria and food from the digestive system. [7]

Peristalsis

Peristalsis animation Peristalsis.gif
Peristalsis animation

Peristalsis is one of the patterns that occur during and shortly after a meal. The contractions occur in wave patterns traveling down short lengths of the GI tract from one section to the next. The contractions occur directly behind the bolus of food that is in the system, forcing it toward the anus into the next relaxed section of smooth muscle. This relaxed section then contracts, generating smooth forward movement of the bolus at between 2–25 cm per second. This contraction pattern depends upon hormones, paracrine signals, and the autonomic nervous system for proper regulation. [4]

Segmentation

Segmentation contractions also occur during and shortly after a meal within short lengths in segmented or random patterns along the intestine. This process is carried out by the longitudinal muscles relaxing while circular muscles contract at alternating sections thereby mixing the food. This mixing allows food and digestive enzymes to maintain a uniform composition, as well as to ensure contact with the epithelium for proper absorption. [4]

Secretion

Every day, seven liters of fluid are secreted by the digestive system. This fluid is composed of four primary components: ions, digestive enzymes, mucus, and bile. About half of these fluids are secreted by the salivary glands, pancreas, and liver, which compose the accessory organs and glands of the digestive system. The rest of the fluid is secreted by the GI epithelial cells.

Ions

The largest component of secreted fluids is ions and water, which are first secreted and then reabsorbed along the tract. The ions secreted primarily consist of H+, K+, Cl, HCO3 and Na+. Water follows the movement of these ions. The GI tract accomplishes this ion pumping using a system of proteins that are capable of active transport, facilitated diffusion and open channel ion movement. The arrangement of these proteins on the apical and basolateral sides of the epithelium determines the net movement of ions and water in the tract.

H+ and Cl are secreted by the parietal cells into the lumen of the stomach creating acidic conditions with a low pH of 1. H+ is pumped into the stomach by exchanging it with K+. This process also requires ATP as a source of energy; however, Cl then follows the positive charge in the H+ through an open apical channel protein.

HCO3 secretion occurs to neutralize the acid secretions that make their way into the duodenum of the small intestine. Most of the HCO3 comes from pancreatic acinar cells in the form of NaHCO3 in an aqueous solution. [6] This is the result of the high concentration of both HCO3 and Na+ present in the duct creating an osmotic gradient to which the water follows. [4]

Digestive enzymes

The second vital secretion of the GI tract is that of digestive enzymes that are secreted in the mouth, stomach and intestines. Some of these enzymes are secreted by accessory digestive organs, while others are secreted by the epithelial cells of the stomach and intestine. While some of these enzymes remain embedded in the wall of the GI tract, others are secreted in an inactive proenzyme form. [4] When these proenzymes reach the lumen of the tract, a factor specific to a particular proenzyme will activate it. A prime example of this is pepsin, which is secreted in the stomach by chief cells. Pepsin in its secreted form is inactive (pepsinogen). However, once it reaches the gastric lumen it becomes activated into pepsin by the high H+ concentration, becoming an enzyme vital to digestion. The release of the enzymes is regulated by neural, hormonal, or paracrine signals. However, in general, parasympathetic stimulation increases secretion of all digestive enzymes.

Mucus

Mucus is released in the stomach and intestine, and serves to lubricate and protect the inner mucosa of the tract. It is composed of a specific family of glycoproteins termed mucins and is generally very viscous. Mucus is made by two types of specialized cells termed mucus cells in the stomach and goblet cells in the intestines. Signals for increased mucus release include parasympathetic innervations, immune system response and enteric nervous system messengers. [4]

Bile

Bile is secreted into the duodenum of the small intestine via the common bile duct. It is produced in liver cells and stored in the gall bladder until release during a meal. Bile is formed of three elements: bile salts, bilirubin and cholesterol. Bilirubin is a waste product of the breakdown of hemoglobin. The cholesterol present is secreted with the feces. The bile salt component is an active non-enzymatic substance that facilitates fat absorption by helping it to form an emulsion with water due to its amphoteric nature. These salts are formed in the hepatocytes from bile acids combined with an amino acid. Other compounds such as the waste products of drug degradation are also present in the bile. [6]

Regulation

The digestive system has a complex system of motility and secretion regulation which is vital for proper function. This task is accomplished via a system of long reflexes from the central nervous system (CNS), short reflexes from the enteric nervous system (ENS) and reflexes from GI peptides working in harmony with each other. [4]

Long reflexes

Long reflexes to the digestive system involve a sensory neuron sending information to the brain, which integrates the signal and then sends messages to the digestive system. While in some situations, the sensory information comes from the GI tract itself; in others, information is received from sources other than the GI tract. When the latter situation occurs, these reflexes are called feedforward reflexes. This type of reflex includes reactions to food or danger triggering effects in the GI tract. Emotional responses can also trigger GI response such as the butterflies in the stomach feeling when nervous. The feedforward and emotional reflexes of the GI tract are considered cephalic reflexes. [4]

Short reflexes

Control of the digestive system is also maintained by ENS, which can be thought of as a digestive brain that can help to regulate motility, secretion and growth. Sensory information from the digestive system can be received, integrated and acted upon by the enteric system alone. When this occurs, the reflex is called a short reflex. [4] Although this may be the case in several situations, the ENS can also work in conjunction with the CNS; vagal afferents from the viscera are received by the medulla, efferents are affected by the vagus nerve. When this occurs, the reflex is called vagovagal reflex. The myenteric plexus and submucosal plexus are both located in the gut wall and receive sensory signals from the lumen of the gut or the CNS. [6]

Gastrointestinal peptides

For further information see Gastrointestinal hormone

GI peptides are signal molecules that are released into the blood by the GI cells themselves. They act on a variety of tissues including the brain, digestive accessory organs, and the GI tract. The effects range from excitatory or inhibitory effects on motility and secretion to feelings of satiety or hunger when acting on the brain. These hormones fall into three major categories, the gastrin and secretin families, with the third composed of all the other hormones unlike those in the other two families. Further information on the GI peptides is summarized in the table below. [8]

General GI peptide information
Secreted byTargetEffects on endocrine secretionEffects on exocrine secretionEffects on motilityOther effectsStimulus for release
Gastrin G Cells in stomachECL cells; parietal cellsNoneIncreases acid secretion, increases mucus growthStimulates gastric contractionNonePeptides and amino acids in lumen; gastrin releasing peptide and ACh in nervous reflexes
Cholecystokinin (CCK)Endocrine I cells of the small intestine; neurons of the brain and gutGallbladder, pancreas, gastric smooth muscleNoneStimulates pancreatic enzyme and HCO3- secretionStimulates gallbladder contraction; inhibits stomach emptyingSatietyFatty acids and some amino acids
Secretin Endocrine S cells of the small intestinePancreas, stomachNoneStimulates pancreatic and hepatic HCO3- secretion; inhibits acid secretion; pancreatic growthStimulates gallbladder contraction; Inhibits stomach emptyingNoneAcid in small intestine
Gastric inhibitory Peptide Endocrine K cells of the small intestineBeta cells of the pancreasStimulates pancreatic insulin releaseInhibits acid secretionNoneSatiety and lipid metabolismGlucose, fatty acid, and amino acids in small intestine
Motilin Endocrine M cells in small intestineSmooth muscle of stomach and duodenumNoneNoneStimulates migrating motor complexAction in brain, stimulates migratory motor complexFasting: cyclic release every 1.5–2 hours by neural stimulus
Glucagon-like peptide-1 Endocrine cells in small intestineEndocrine pancreasStimulates insulin release; inhibits glucagon releasePossibly inhibits acid secretionSlows gastric emptyingSatiety; various CNS functions Mixed meals of fats and carbohydrates

Digestion

Splanchnic circulation

Notes and references

  1. Trowers, Eugene; Tischler, Marc (2014-07-19). Gastrointestinal Physiology: A Clinical Approach. Springer. p. 9. ISBN   9783319071640.
  2. "Human Physiology/The gastrointestinal system - Wikibooks, open books for an open world". en.wikibooks.org. Retrieved 2016-09-05.
  3. Drossman, DA (19 February 2016). "Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV". Gastroenterology. 150 (6): 1262–1279.e2. doi:10.1053/j.gastro.2016.02.032. PMID   27144617.
  4. 1 2 3 4 5 6 7 8 9 Silverthorn Ph. D, Dee Unglaub (April 2, 2006). Human Physiology: An Integrated Approach. Benjamin Cummings. ISBN   0-8053-6851-5.
  5. Wood, J. D. (1999). "Mixing and moving in the gut". Gut. 45 (3): 333–334. doi:10.1136/gut.45.3.333. PMC   1727625 . PMID   10446098.
  6. 1 2 3 4 Bowen DVM PhD, R (July 5, 2006). "Pathophysiology of the Digestive System" . Retrieved 2008-03-19.
  7. Nosek PhD, T.M. "Essentials Of Human Physiology". Archived from the original on 2008-04-01. Retrieved 2008-03-19.
  8. "Overview of Gastrointestinal Hormones". www.vivo.colostate.edu. Archived from the original on 2018-08-14. Retrieved 2016-09-16.

Related Research Articles

<span class="mw-page-title-main">Stomach</span> Digestive organ

The stomach is a muscular, hollow organ in the gastrointestinal tract of humans and many other animals, including several invertebrates. The stomach has a dilated structure and functions as a vital organ in the digestive system. The stomach is involved in the gastric phase of digestion, following chewing. It performs a chemical breakdown by means of enzymes and hydrochloric acid.

<span class="mw-page-title-main">Gastrointestinal tract</span> Organ system within humans and other animals

The gastrointestinal tract is the tract or passageway of the digestive system that leads from the mouth to the anus. The GI tract contains all the major organs of the digestive system, in humans and other animals, including the esophagus, stomach, and intestines. Food taken in through the mouth is digested to extract nutrients and absorb energy, and the waste expelled at the anus as feces. Gastrointestinal is an adjective meaning of or pertaining to the stomach and intestines.

<span class="mw-page-title-main">Small intestine</span> Organ in the gastrointestinal tract

The small intestine or small bowel is an organ in the gastrointestinal tract where most of the absorption of nutrients from food takes place. It lies between the stomach and large intestine, and receives bile and pancreatic juice through the pancreatic duct to aid in digestion. The small intestine is about 5.5 metres long and folds many times to fit in the abdomen. Although it is longer than the large intestine, it is called the small intestine because it is narrower in diameter.

<span class="mw-page-title-main">Peristalsis</span> Radially symmetrical contraction and relaxation of muscles

Peristalsis is a type of intestinal motility, characterized by radially symmetrical contraction and relaxation of muscles that propagate in a wave down a tube, in an anterograde direction. Peristalsis is progression of coordinated contraction of involuntary circular muscles, which is preceded by a simultaneous contraction of the longitudinal muscle and relaxation of the circular muscle in the lining of the gut.

<span class="mw-page-title-main">Digestion</span> Biological process of breaking down food

Digestion is the breakdown of large insoluble food molecules into small water-soluble food molecules so that they can be absorbed into the watery blood plasma. In certain organisms, these smaller substances are absorbed through the small intestine into the blood stream. Digestion is a form of catabolism that is often divided into two processes based on how food is broken down: mechanical and chemical digestion. The term mechanical digestion refers to the physical breakdown of large pieces of food into smaller pieces which can subsequently be accessed by digestive enzymes. Mechanical digestion takes place in the mouth through mastication and in the small intestine through segmentation contractions. In chemical digestion, enzymes break down food into the small molecules the body can use.

<span class="mw-page-title-main">Enteric nervous system</span> Vital system controlling the gastrointestinal tract

The enteric nervous system (ENS) or intrinsic nervous system is one of the main divisions of the autonomic nervous system (ANS) and consists of a mesh-like system of neurons that governs the function of the gastrointestinal tract. It is capable of acting independently of the sympathetic and parasympathetic nervous systems, although it may be influenced by them. The ENS is nicknamed the "second brain". It is derived from neural crest cells.

<span class="mw-page-title-main">Gastric acid</span> Digestive fluid formed in the stomach

Gastric acid, gastric juice, or stomach acid is a digestive fluid formed within the stomach lining. With a pH between 1 and 3, gastric acid plays a key role in digestion of proteins by activating digestive enzymes, which together break down the long chains of amino acids of proteins. Gastric acid is regulated in feedback systems to increase production when needed, such as after a meal. Other cells in the stomach produce bicarbonate, a base, to buffer the fluid, ensuring a regulated pH. These cells also produce mucus – a viscous barrier to prevent gastric acid from damaging the stomach. The pancreas further produces large amounts of bicarbonate and secretes bicarbonate through the pancreatic duct to the duodenum to neutralize gastric acid passing into the digestive tract.

<span class="mw-page-title-main">Myenteric plexus</span> Part of the enteric nervous system

The myenteric plexus provides motor innervation to both layers of the muscular layer of the gut, having both parasympathetic and sympathetic input, whereas the submucous plexus provides secretomotor innervation to the mucosa nearest the lumen of the gut.

<span class="mw-page-title-main">Digestive enzyme</span> Class of enzymes

Digestive enzymes are a group of enzymes that break down polymeric macromolecules into their smaller building blocks, in order to facilitate their absorption into the cells of the body. Digestive enzymes are found in the digestive tracts of animals and in the tracts of carnivorous plants, where they aid in the digestion of food, as well as inside cells, especially in their lysosomes, where they function to maintain cellular survival. Digestive enzymes of diverse specificities are found in the saliva secreted by the salivary glands, in the secretions of cells lining the stomach, in the pancreatic juice secreted by pancreatic exocrine cells, and in the secretions of cells lining the small and large intestines.

<span class="mw-page-title-main">Motilin</span>

Motilin is a 22-amino acid polypeptide hormone in the motilin family that, in humans, is encoded by the MLN gene.

<span class="mw-page-title-main">Enterochromaffin cell</span> Cell type

Enterochromaffin (EC) cells are a type of enteroendocrine cell, and neuroendocrine cell. They reside alongside the epithelium lining the lumen of the digestive tract and play a crucial role in gastrointestinal regulation, particularly intestinal motility and secretion. They were discovered by Nikolai Kulchitsky.

An electrogastrogram (EGG) is a computer generated graphic produced by electrogastrography, which detects, analyzes and records the myoelectrical signal generated by the movement of the smooth muscle of the stomach, intestines and other smooth muscle containing organs. An electrogastroenterogram or electroviscerogram is a similar display of the recording of myoelectrical activity of gastrointestinal or other organs which are able to generate myoelectrical activity.

<span class="mw-page-title-main">Vagovagal reflex</span>

Vagovagal reflex refers to gastrointestinal tract reflex circuits where afferent and efferent fibers of the vagus nerve coordinate responses to gut stimuli via the dorsal vagal complex in the brain. The vagovagal reflex controls contraction of the gastrointestinal muscle layers in response to distension of the tract by food. This reflex also allows for the accommodation of large amounts of food in the gastrointestinal tracts.

The enterogastric reflex is one of the three extrinsic reflexes of the gastrointestinal tract, the other two being the gastroileal reflex and the gastrocolic reflex. The enterogastric reflex is stimulated by duodenal distension. It can also be stimulated by a pH of 3-4 in the duodenum and by a pH of 1.5 in the stomach. Upon initiation of the reflex, the release of gastrin by G-cells in the antrum of the stomach is shut off. This in turn inhibits gastric motility and the secretion of gastric acid (HCl).

<span class="mw-page-title-main">Enteroendocrine cell</span>

Enteroendocrine cells are specialized cells of the gastrointestinal tract and pancreas with endocrine function. They produce gastrointestinal hormones or peptides in response to various stimuli and release them into the bloodstream for systemic effect, diffuse them as local messengers, or transmit them to the enteric nervous system to activate nervous responses. Enteroendocrine cells of the intestine are the most numerous endocrine cells of the body. They constitute an enteric endocrine system as a subset of the endocrine system just as the enteric nervous system is a subset of the nervous system. In a sense they are known to act as chemoreceptors, initiating digestive actions and detecting harmful substances and initiating protective responses. Enteroendocrine cells are located in the stomach, in the intestine and in the pancreas. Microbiota plays key roles in the intestinal immune and metabolic responses in these enteroendocrine cells via their fermentation product, acetate.

A slow-wave potential is a rhythmic electrophysiological event in the gastrointestinal tract. The normal conduction of slow waves is one of the key regulators of gastrointestinal motility. Slow waves are generated and propagated by a class of pacemaker cells called the interstitial cells of Cajal, which also act as intermediates between nerves and smooth muscle cells. Slow waves generated in interstitial cells of Cajal spread to the surrounding smooth muscle cells and control motility.

The basal or basic electrical rhythm (BER) or electrical control activity (ECA) is the spontaneous depolarization and repolarization of pacemaker cells known as interstitial cells of Cajal (ICCs) in the smooth muscle of the stomach, small intestine, and large intestine. This electrical rhythm is spread through gap junctions in the smooth muscle of the GI tract. These pacemaker cells, also called the ICCs, control the frequency of contractions in the gastrointestinal tract. The cells can be located in either the circular or longitudinal layer of the smooth muscle in the GI tract; circular for the small and large intestine, longitudinal for the stomach. The frequency of contraction differs at each location in the GI tract beginning with 3 per minute in the stomach, then 12 per minute in the duodenum, 9 per minute in the ileum, and a normally low one contraction per 30 minutes in the large intestines that increases 3 to 4 times a day due to a phenomenon called mass movement. The basal electrical rhythm controls the frequency of contraction but additional neuronal and hormonal controls regulate the strength of each contraction.

The nervous system, and endocrine system collaborate in the digestive system to control gastric secretions, and motility associated with the movement of food throughout the gastrointestinal tract, including peristalsis, and segmentation contractions.

<span class="mw-page-title-main">Gastrointestinal wall</span> Digestive system structure

The gastrointestinal wall of the gastrointestinal tract is made up of four layers of specialised tissue. From the inner cavity of the gut outwards, these are:

  1. Mucosa
  2. Submucosa
  3. Muscular layer
  4. Serosa or adventitia
<span class="mw-page-title-main">Human digestive system</span> Digestive system in humans

The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion. Digestion involves the breakdown of food into smaller and smaller components, until they can be absorbed and assimilated into the body. The process of digestion has three stages: the cephalic phase, the gastric phase, and the intestinal phase.