Enterohepatic circulation

Last updated
Enterohepatic circulation of drugs. Enterohepatic.svg
Enterohepatic circulation of drugs.

Enterohepatic circulation is the circulation of biliary acids, bilirubin, drugs or other substances from the liver to the bile, followed by entry into the small intestine, absorption by the enterocyte and transport back to the liver. Enterohepatic circulation is an especially important concept in the field of toxicology as many lipophilic xenobiotics undergo this process causing repeated liver damage.

Contents

Biliary acids

The circuit

Hepatocytes metabolize cholesterol to cholic acid and chenodeoxycholic acid. These lipid-soluble bile acids are conjugated (reversibly attached) mainly to glycine or taurine molecules to form water soluble primary conjugated bile acids, sometimes called "bile salts". These bile acids travel to the gall bladder during the interdigestive phase for storage and to the descending part of the duodenum via the common bile duct through the major duodenal papilla during digestion. 95% of the bile acids which are delivered to the duodenum will be recycled by the enterohepatic circulation.

Due to the pH of the small intestine, most of the bile acids are ionized and mostly occur as their sodium salts which are then called “primary conjugated bile salts.” In the lower small intestine and colon, bacteria dehydroxylate some of the primary bile salts to form secondary conjugated bile salts (which are still water-soluble). Along the proximal and distal ileum, these conjugated primary bile salts are reabsorbed actively into hepatic portal circulation. Bacteria deconjugate some of the primary and secondary conjugated bile salts back to lipid-soluble bile acids, which are passively absorbed into hepatic portal circulation. Finally, the conjugated bile acids which remained un-ionized conjugated bile acids are passively absorbed.

Venous blood from the ileum goes straight into the portal vein and then into the liver sinusoids. There, hepatocytes extract bile acids very efficiently, and little escapes the healthy liver into systemic circulation.

The net effect of enterohepatic recirculation is that each bile salt molecule is reused about 20 times, often multiple times during a single digestive phase.

Function

The presence of biliary acids in the intestines helps in absorption of fats and other substances. [1]

Bilirubin

Bilirubin is conjugated with glucuronic acid in the liver by the enzyme glucuronyltransferase, making it soluble in water. Much of it goes into the bile and thus out into the small intestine. Although 20% of the secreted bilirubinoid bile is reabsorbed by the small intestine, [2] conjugated bilirubin is not reabsorbed in small intestine. All conjugated bilirubin in the large intestine is metabolised by colonic bacteria to urobilinogen, which is then further oxidized to urobilin and stercobilin. Urobilin, stercobilin and their degradation products give feces its brown color. [3] However, just like bile, some of the urobilinogen reabsorbed is resecreted in the bile which is also part of enterohepatic circulation. The rest of the reabsorbed urobilinogen is excreted in the urine where it is converted to an oxidized form, urobilin, which gives urine its characteristic yellow color.

Drugs

Chloramphenicol, aspirin, paracetamol, diazepam, lorazepam, morphine, metronidazole. Not only drugs but also endogenous substrates like bilirubin, steroidal hormones and thyroxine utilize this pathway.

Enterohepatic circulation of drugs describes the process by which drugs are conjugated to glucuronic acid in the liver, excreted into bile, metabolized back into the free drug by intestinal bacteria, and the drug is then reabsorbed into plasma. For many drugs that undergo this process, lower doses of drugs can be therapeutically effective because elimination is reduced by the 'recycling' of the drug. But for a small number of drugs that are very toxic to the intestine (e.g. irinotecan), these molecules which would not otherwise be very toxic can become so because of this process, and therefore inhibition of this step can be protective. For the majority of drugs which undergo enterohepatic circulation that are not toxic to the intestine, inhibition of this process leads to a reduction of the levels of drug and reduced therapeutic effect. For example, antibiotics that kill gut bacteria often reduce enterohepatic drug circulation and this requires a temporary increase of the drug's dose until the antibiotic use is discontinued and the gut repopulates with bacteria. This effect of antibiotics on enterohepatic circulation of other drugs is one of several types of drug interactions.

Pharmacokinetic Models of enterohepatic circulation

Pharmacokinetic models of the enterohepatic circulation process has been summarized in a recent article. [4] [ further explanation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Jaundice</span> Abnormal pigmentation symptom for disease of the liver

Jaundice, also known as icterus, is a yellowish or greenish pigmentation of the skin and sclera due to high bilirubin levels. Jaundice in adults is typically a sign indicating the presence of underlying diseases involving abnormal heme metabolism, liver dysfunction, or biliary-tract obstruction. The prevalence of jaundice in adults is rare, while jaundice in babies is common, with an estimated 80% affected during their first week of life. The most commonly associated symptoms of jaundice are itchiness, pale feces, and dark urine.

<span class="mw-page-title-main">Bilirubin</span> Red pigment of the bile

Bilirubin (BR) is a red-orange compound that occurs in the normal catabolic pathway that breaks down heme in vertebrates. This catabolism is a necessary process in the body's clearance of waste products that arise from the destruction of aged or abnormal red blood cells. In the first step of bilirubin synthesis, the heme molecule is stripped from the hemoglobin molecule. Heme then passes through various processes of porphyrin catabolism, which varies according to the region of the body in which the breakdown occurs. For example, the molecules excreted in the urine differ from those in the feces. The production of biliverdin from heme is the first major step in the catabolic pathway, after which the enzyme biliverdin reductase performs the second step, producing bilirubin from biliverdin.

<span class="mw-page-title-main">Bile</span> Dark greenish-brown fluid aiding in the digestion of fats

Bile, or gall, is a yellow-green fluid produced by the liver of most vertebrates that aids the digestion of lipids in the small intestine. In humans, bile is primarily composed of water, produced continuously by the liver, and stored and concentrated in the gallbladder. After a human eats, this stored bile is discharged into the first section of their small intestine.

<span class="mw-page-title-main">Small intestine</span> Organ in the gastrointestinal tract

The small intestine or small bowel is an organ in the gastrointestinal tract where most of the absorption of nutrients from food takes place. It lies between the stomach and large intestine, and receives bile and pancreatic juice through the pancreatic duct to aid in digestion. The small intestine is about 5.5 metres long and folds many times to fit in the abdomen. Although it is longer than the large intestine, it is called the small intestine because it is narrower in diameter.

<span class="mw-page-title-main">Stercobilin</span> Brown pigment of bile origin

Stercobilin is a tetrapyrrolic bile pigment and is one end-product of heme catabolism. It is the chemical responsible for the brown color of human feces and was originally isolated from feces in 1932. Stercobilin can be used as a marker for biochemical identification of fecal pollution levels in rivers.

<span class="mw-page-title-main">Enterocyte</span> Type of intestinal cell

Enterocytes, or intestinal absorptive cells, are simple columnar epithelial cells which line the inner surface of the small and large intestines. A glycocalyx surface coat contains digestive enzymes. Microvilli on the apical surface increase its surface area. This facilitates transport of numerous small molecules into the enterocyte from the intestinal lumen. These include broken down proteins, fats, and sugars, as well as water, electrolytes, vitamins, and bile salts. Enterocytes also have an endocrine role, secreting hormones such as leptin.

<span class="mw-page-title-main">Glucuronic acid</span> Sugar acid

Glucuronic acid is a uronic acid that was first isolated from urine. It is found in many gums such as gum arabic, xanthan, and kombucha tea and is important for the metabolism of microorganisms, plants and animals.

<span class="mw-page-title-main">Cholestasis</span> Medical condition

Cholestasis is a condition where the flow of bile from the liver to the duodenum is impaired. The two basic distinctions are:

<span class="mw-page-title-main">Chenodeoxycholic acid</span> One of the main bile acids

Chenodeoxycholic acid is a bile acid. Salts of this carboxylic acid are called chenodeoxycholates. Chenodeoxycholic acid is one of the main bile acids. It was first isolated from the bile of the domestic goose, which gives it the "cheno" portion of its name.

<span class="mw-page-title-main">Bile acid</span> Steroid acid found predominantly in the bile of mammals and other vertebrates

Bile acids are steroid acids found predominantly in the bile of mammals and other vertebrates. Diverse bile acids are synthesized in the liver. Bile acids are conjugated with taurine or glycine residues to give anions called bile salts.

<span class="mw-page-title-main">Urobilinogen</span> Chemical compound

Urobilinogen is a yellow by-product of bilirubin reduction. It is formed in the intestines by the bacterial enzyme bilirubin reductase. About half of the urobilinogen formed is reabsorbed and taken up via the portal vein to the liver, enters circulation and is excreted by the kidney.

<span class="mw-page-title-main">Urobilin</span> Yellow pigment in urine

Urobilin or urochrome is the chemical primarily responsible for the yellow color of urine. It is a linear tetrapyrrole compound that, along with the related colorless compound urobilinogen, are degradation products of the cyclic tetrapyrrole heme.

<span class="mw-page-title-main">Ascending cholangitis</span> Medical condition

Ascending cholangitis, also known as acute cholangitis or simply cholangitis, is inflammation of the bile duct, usually caused by bacteria ascending from its junction with the duodenum. It tends to occur if the bile duct is already partially obstructed by gallstones.

<span class="mw-page-title-main">Biliary tract</span> Organ system

The biliary tract refers to the liver, gallbladder and bile ducts, and how they work together to make, store and secrete bile. Bile consists of water, electrolytes, bile acids, cholesterol, phospholipids and conjugated bilirubin. Some components are synthesized by hepatocytes ; the rest are extracted from the blood by the liver.

<span class="mw-page-title-main">Stercobilinogen</span> Chemical compound

Stercobilinogen is a chemical created by bacteria in the gut. It is made of broken-down hemoglobin. It is further processed to become the chemical that gives feces its brown color.

<span class="mw-page-title-main">Bilirubinuria</span> Medical condition

In medicine, bilirubinuria is an abnormality in which conjugated bilirubin is detected in the urine.

<span class="mw-page-title-main">Urine test strip</span> Diagnostic tool used in urinalysis

A urine test strip or dipstick is a basic diagnostic tool used to determine pathological changes in a patient's urine in standard urinalysis.

Cholestatic pruritus is the sensation of itch due to nearly any liver disease, but the most commonly associated entities are primary biliary cholangitis, primary sclerosing cholangitis, obstructive choledocholithiasis, carcinoma of the bile duct, cholestasis, and chronic hepatitis C viral infection and other forms of viral hepatitis.

<span class="mw-page-title-main">Human digestive system</span> Digestive system in humans

The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion. Digestion involves the breakdown of food into smaller and smaller components, until they can be absorbed and assimilated into the body. The process of digestion has three stages: the cephalic phase, the gastric phase, and the intestinal phase.

<span class="mw-page-title-main">Bilirubin glucuronide</span> Chemical compound

Bilirubin glucuronide is a water-soluble reaction intermediate over the process of conjugation of indirect bilirubin. Bilirubin glucuronide itself belongs to the category of conjugated bilirubin along with bilirubin di-glucuronide. However, only the latter one is primarily excreted into the bile in the normal setting.

References

  1. Lipoproteins: Lipid Digestion & Transport Archived 2017-07-04 at the Wayback Machine by Joyce J. Diwan. Rensselaer Polytechnic Institute. Retrieved June 2012
  2. "Bilirubin Metabolism - an overview | ScienceDirect Topics".
  3. Kuntz, Erwin (2008). Hepatology: Textbook and Atlas. Germany: Springer. p. 38. ISBN   978-3-540-76838-8.
  4. Okour, M. & Brundage, R.C. Curr Pharmacol Rep (2017) 3: 301. https://doi.org/10.1007/s40495-017-0096-z