Strigomonas culicis

Last updated

Strigomonas culicis
Strigomonas culicis.jpg
Strigomonas culicis observed by differential interference contrast (DIC) [1]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Phylum: Euglenozoa
Class: Kinetoplastea
Order: Trypanosomatida
Genus: Strigomonas
Species:
S. culicis
Binomial name
Strigomonas culicis
Teixeira et al., 2011 [2]
Type strain
ATCC12982, TCC043E
Synonyms
  • Blastocrithidia culicisWallace and Johnson, 1961 [3]
  • Herpetomonas culicisNovy et al. 1907 [4]

Strigomonas culicis is a protist and member of flagellated trypanosomatids. It is an obligate parasite in the gastrointestinal tract of mosquito, and is in turn a host to symbiotic bacteria. It maintains strict mutualistic relationship with the bacteria as a sort of cell organelle (endosymbiont) so that it cannot lead an independent life without the bacteria. [5] [6] Along with Angomonas deanei , S. culicis is researched as model organism for the evolution of symbiotic relationsships with intracellular bacteria.

Contents

Taxonomy

S. culicis was first described as Trypanosoma (Herpetomonas) culicis in 1907 by Frederick G. Novy,  Ward J. MacNeal, and Harry N. Torreyin 1907. [7] The species name refers to the mosquito genus Culex in which it was found, although it has been found to also be present in other mosquitos such as Aedes . [8] Another description by F.G. Wallace and A. Johnson as Blastocrithidia culicis, published in 1961 based on specimens from Aedes vexans , [3] was later considered synonymous to Herpetomonas culicis. Eventually, by microbiological analysis of endosymbiont harboring Trypanosoma, this species was assigned to the genus Strigomonas in 2011, bearing the current name S. culicis. [2]

The obligate bacterium belongs a group of ß-proteobacterium and provides nutrients to the host, in addition to influencing some of the cellular functions. [9]

Biology

Stages of dividing Strigomonas culicis with its bacterial symbiont - S (blue in 2 picture) and green indicate the bacterium; K denotes the kinetoplast, and N, the nucleus Strigomonas culicis division.jpg
Stages of dividing Strigomonas culicis with its bacterial symbiont - S (blue in 2 picture) and green indicate the bacterium; K denotes the kinetoplast, and N, the nucleus

S. culicis spends its life cycle in mosquitos. It migrates from the mosquito midgut and enter the body cavity (haemocoel) and finally reside in the salivary glands. [10] Unlike other trypanosomatids, S. culicis does not produce some amino acids such as methionine, histidine, and arginine; and vitamins such as thiamin, nicotinamide, and riboflavin. [8] The bacterium provides these nutrients. In addition, it also provides enzymes required by the host for amino acid synthesis, lipid and purine/pyrimidine metabolism, urea cycle, haeme biosynthesis, [11] protein synthesis, and protein folding. It can not reproduce on its own and relies on signals from the protist's nucleus. [6] Isolated bacteria cannot survive on their own. [11] When the bacteria are removed by antibiotic treatment, the protist survives but can not infect mosquitos. [6]

S. culicis has about 12,162 open reading frames (ORFs). [11]

Symbiont

The bacterium Ca. Kinetoplastibacterium blastocrithidii is a ß-proteobacterium of the family Alcaligenaceae. It is enclosed in two layers of cell membranes, and unlike typical bacterial membrane, peptidoglycan is greatly reduced. [11] It acts as a cell organelle not only by supplying essential enzymes, but also by replacing paraflagellar rod associated to the axoneme, thus, intimately associated with the kinetoplast. [12] In addition, it provides surplus supply of ATP molecules for increased metabolic activities. [13] During cell division, as the kinetoplast of the host divides so do the bacterium. [14] The host cell controls the number of bacterial division. [1] This coordinated mitosis results in even distribution of one bacterium in each daughter cell. [14]

Ecology

Strigomonas culicis can be found in several mosquito genera, such as Anopheles , Culex , Aedes [8] and Coquillettidia .

Related Research Articles

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. This phenomenon is known as endosymbiosis. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Flagellate</span> Group of protists with at least one whip-like appendage

A flagellate is a cell or organism with one or more whip-like appendages called flagella. The word flagellate also describes a particular construction characteristic of many prokaryotes and eukaryotes and their means of motion. The term presently does not imply any specific relationship or classification of the organisms that possess flagella. However, the term "flagellate" is included in other terms which are more formally characterized.

<span class="mw-page-title-main">Trypanosomatida</span> Flagellate kinetoplastid excavate order

Trypanosomatida is a group of kinetoplastid unicellular organisms distinguished by having only a single flagellum. The name is derived from the Greek trypano (borer) and soma (body) because of the corkscrew-like motion of some trypanosomatid species. All members are exclusively parasitic, found primarily in insects. A few genera have life-cycles involving a secondary host, which may be a vertebrate, invertebrate or plant. These include several species that cause major diseases in humans. Some trypanosomatida are intracellular parasites, with the important exception of Trypanosoma brucei.

<i>Wolbachia</i> Genus of bacteria in the Alphaproteobacteria class

Wolbachia is a genus of gram-negative bacteria that can either infect many species of arthropod as an intracellular parasite, or act as a mutualistic microbe in filarial nematodes. It is one of the most common parasitic microbes of arthropods, and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex. Some host species cannot reproduce, or even survive, without Wolbachia colonisation. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70% of all insect species are estimated to be potential hosts.

<i>Buchnera aphidicola</i> Species of bacterium

Buchnera aphidicola, a member of the Pseudomonadota and the only species in the genus Buchnera, is the primary endosymbiont of aphids, and has been studied in the pea aphid, Acyrthosiphon pisum. Buchnera is believed to have had a free-living, Gram-negative ancestor similar to a modern Enterobacterales, such as Escherichia coli. Buchnera is 3 µm in diameter and has some of the key characteristics of its Enterobacterales relatives, such as a Gram-negative cell wall. However, unlike most other Gram-negative bacteria, Buchnera lacks the genes to produce lipopolysaccharides for its outer membrane. The long association with aphids and the limitation of crossover events due to strictly vertical transmission has seen the deletion of genes required for anaerobic respiration, the synthesis of amino sugars, fatty acids, phospholipids, and complex carbohydrates. This has resulted not only in one of the smallest known genomes of any living organism, but also one of the most genetically stable.

<i>Mixotricha paradoxa</i> Species of protozoan

Mixotricha paradoxa is a species of protozoan that lives inside the gut of the Australian termite species Mastotermes darwiniensis.

Symbiotic bacteria are bacteria living in symbiosis with another organism or each other. For example, rhizobia living in root nodules of legumes provide nitrogen fixing activity for these plants.

<i>Vorticella</i> Genus of single-celled organisms

Vorticella is a genus of bell-shaped ciliates that have stalks to attach themselves to substrates. The stalks have contractile myonemes, allowing them to pull the cell body against substrates. The formation of the stalk happens after the free-swimming stage.

Paratransgenesis is a technique that attempts to eliminate a pathogen from vector populations through transgenesis of a symbiont of the vector. The goal of this technique is to control vector-borne diseases. The first step is to identify proteins that prevent the vector species from transmitting the pathogen. The genes coding for these proteins are then introduced into the symbiont, so that they can be expressed in the vector. The final step in the strategy is to introduce these transgenic symbionts into vector populations in the wild. One use of this technique is to prevent mortality for humans from insect-borne diseases. Preventive methods and current controls against vector-borne diseases depend on insecticides, even though some mosquito breeds may be resistant to them. There are other ways to fully eliminate them. “Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit.” The acidic bacteria Asaia symbionts are beneficial in the normal development of mosquito larvae; however, it is unknown what Asais symbionts do to adult mosquitoes.

<i>Bodo saltans</i> Species of kinetoplastid flagellated phagotrophic protozoa

Bodo saltans is a free-living nonparasitic species of kinetoplastid flagellated phagotrophic protozoa that feed on bacteria. Bodo saltans cells have been reported in freshwater and marine environments.

A mixotroph is an organism that can use a mix of different sources of energy and carbon, instead of having a single trophic mode on the continuum from complete autotrophy at one end to heterotrophy at the other. It is estimated that mixotrophs comprise more than half of all microscopic plankton. There are two types of eukaryotic mixotrophs: those with their own chloroplasts, and those with endosymbionts—and those that acquire them through kleptoplasty or through symbiotic associations with prey or enslavement of their organelles.

<i>Angomonas deanei</i> Species of parasitic flagellate protist in the Kinetoplastea class

Angomonas deanei is a flagellated trypanosomatid protozoan. As an obligate parasite, it infects the gastrointestinal tract of insects, and is in turn a host to symbiotic bacteria. The bacterial endosymbiont Ca. "Kinetoplastibacterium crithidii" maintains a permanent mutualistic relationship with the protozoan such that it is no longer able to reproduce and survive on its own. The symbiosis, subsequently also discovered in varying degrees in other protists such as Strigomonas culicis, Novymonas esmeraldas, Diplonema japonicumand Diplonema aggregatum are considered as good models for the understanding of the evolution of eukaryotes from prokaryotes, and on the origin of cell organelles.

Phytomonas is a genus of trypanosomatids that infect plant species. Initially described using existing genera in the family Trypanosomatidae, such as Trypanosoma or Leishmania, the nomenclature of Phytomonas was proposed in 1909 in light of their distinct hosts and morphology. When the term was originally coined, no strict criterion was followed, and the term was adopted by the scientific community to describe flagellate protozoa in plants as a matter of convenience. Members of the taxon are globally distributed and have been discovered in members of over 24 plant families. Of these 24, the two main families that are infected by Phytomonas are Euphorbiaceae and Asclepiadiacae. These protists have been found in hosts between 50° latitude North and South, and thus they can be found on all continents save for Antarctica.

<span class="mw-page-title-main">Armophorea</span> Class of single-celled organisms

Armophorea is a class of ciliates in the subphylum Intramacronucleata. . It was first resolved in 2004 and comprises three orders: Metopida, Clevelandellida, and Armophorida. Previously members of this class were thought to be heterotrichs because of similarities in morphology, most notably a characteristic dense arrangement of cilia surrounding their oral structures. However, the development of genetic tools and subsequent incorporation of DNA sequence information has led to major revisions in the evolutionary relationships of many protists, including ciliates. Metopids, clevelandellids, and armophorids were grouped into this class based on similarities in their small subunit rRNA sequences, making them one of two so-called "riboclasses" of ciliates, however, recent analyses suggest that Armophorida may not be related to the other two orders.

<i>Neobodo</i> Genus of protists

Neobodo are diverse protists belonging to the eukaryotic supergroup Excavata. They are Kinetoplastids in the subclass Bodonidae. They are small, free-living, heterotrophic flagellates with two flagella of unequal length used to create a propulsive current for feeding. As members of Kinetoplastids, they have an evident kinetoplast There was much confusion and debate within the class Kinetoplastid and subclass Bodonidae regarding the classification of the organism, but finally the new genera Neobodo was proposed by Keith Vickerman. Although they are one of the most common flagellates found in freshwater, they are also able to tolerate saltwater Their ability to alternate between both marine and freshwater environments in many parts of the world give them a “cosmopolitan” character. Due to their relatively microscopic size ranging between 4–12 microns, they are further distinguished as heterotrophic nanoflagellates. This small size ratio limits them as bacterivores that swim around feeding on bacteria attached to surfaces or in aggregates.

Novymonas esmeraldas is a protist and member of flagellated trypanosomatids. It is an obligate parasite in the gastrointestinal tract of a bug, and is in turn a host to symbiotic bacteria. It maintains strict mutualistic relationship with the bacteria as a sort of cell organelle (endosymbiont) so that it cannot lead an independent life without the bacteria. Its discovery in 2016 suggests that it is a good model in the evolution of prokaryotes into eukaryotes by symbiogenesis. The endosymbiotic bacterium was identified as member of the genus Pandoraea.

Angomonas desouzai is a parasitic protist from the order Trypanosomatida.

Strigomonas oncopelti is a parasitic protist from the order Trypanosomatida.

Strigomonadinae is a subfamily of protists in the order Trypanosomatida. All species in this taxon harbor endodymbiontic bacteria of the Candidatus Kinetoplastibacterium genus.

Kentomonas is a monotypic genus of protist in the order Trypanosomatida. The only described species in the genus is Kentomonas sorsogonicus.

References

  1. 1 2 Catta-Preta, Carolina M. C.; Brum, Felipe L.; da Silva, Camila C.; Zuma, Aline A.; Elias, Maria C.; de Souza, Wanderley; Schenkman, Sergio; Motta, Maria Cristina M. (2015). "Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle". Frontiers in Microbiology. 6: 520. doi: 10.3389/fmicb.2015.00520 . PMC   4451579 . PMID   26082757.
  2. 1 2 Teixeira, Marta M.G.; Borghesan, Tarcilla C.; Ferreira, Robson C.; Santos, Marcia A.; Takata, Carmen S.A.; Campaner, Marta; Nunes, Vania L.B.; Milder, Regina V.; de Souza, Wanderley; Camargo, Erney P. (2011). "Phylogenetic Validation of the Genera Angomonas and Strigomonas of Trypanosomatids Harboring Bacterial Endosymbionts with the Description of New Species of Trypanosomatids and of Proteobacterial Symbionts". Protist. 162 (3): 503–524. doi:10.1016/j.protis.2011.01.001. PMID   21420905.
  3. 1 2 Wallace, F.G.; Johnson, A. (1961). "The infectivity of old cultured strains of mosquito flagellates". Journal of Insect Pathology. 3: 75–80.
  4. Page Taxonomy browser (Strigomonas culicis) on "Taxonomy Browser". NCBI . Retrieved 2023-12-02.
  5. Chang, K. P. (1974). "Ultrastructure of symbiotic bacteria in normal and antibiotic-treated Blastocrithidia culicis and Crithidia oncopelti". The Journal of Protozoology. 21 (5): 699–707. doi:10.1111/j.1550-7408.1974.tb03733.x. PMID   4217371.
  6. 1 2 3 Brunoro, Giselle V.F.; Menna-Barreto, Rubem F.S.; Garcia-Gomes, Aline S.; Boucinha, Carolina; Lima, Diogo B.; Carvalho, Paulo C.; Teixeira-Ferreira, André; Trugilho, Monique R.O.; Perales, Jonas; Schwämmle, Veit; Catanho, Marcos (2019). "Quantitative Proteomic Map of the Trypanosomatid Strigomonas culicis: The Biological Contribution of its Endosymbiotic Bacterium". Protist. 170 (6): 125698. doi:10.1016/j.protis.2019.125698. PMID   31760169. S2CID   208275170.
  7. Novy, F. G.; MacNeal, W. J.; Torrey, H. N. (1907). "The Trypanosomes of Mosquitoes and Other Insects". Journal of Infectious Diseases. 4 (2): 223–276. doi:10.1093/infdis/4.2.223. JSTOR   30072673.
  8. 1 2 3 de Menezez, Maria Claudia Noronha Dutra; Roitmanz, Isaac (1991). "Nutritional Requirements of Blastocrithidia culicis , a Trypanosomatid with an Endosymbiont 1". The Journal of Protozoology. 38 (2): 122–123. doi:10.1111/j.1550-7408.1991.tb06030.x.
  9. de Souza, Silvana Sant´Anna; Catta-Preta, Carolina Moura; Alves, João Marcelo P.; Cavalcanti, Danielle P.; Teixeira, Marta M. G.; Camargo, Erney P.; De Souza, Wanderley; Silva, Rosane; Motta, Maria Cristina M. (2017). Yurchenko, Vyacheslav (ed.). "Expanded repertoire of kinetoplast associated proteins and unique mitochondrial DNA arrangement of symbiont-bearing trypanosomatids". PLOS ONE. 12 (11): e0187516. Bibcode:2017PLoSO..1287516D. doi: 10.1371/journal.pone.0187516 . PMC   5683618 . PMID   29131838.
  10. Catta-Preta, C.M.C.; Nascimento, M.T.C.; Garcia, M.C.F.; Saraiva, E.M.; Motta, M.C.M.; Meyer-Fernandes, J.R. (2013). "The presence of a symbiotic bacterium in Strigomonas culicis is related to differential ecto-phosphatase activity and influences the mosquito–protozoa interaction". International Journal for Parasitology. 43 (7): 571–577. doi:10.1016/j.ijpara.2013.02.005. PMID   23562935.
  11. 1 2 3 4 Motta, Maria Cristina Machado; Martins, Allan Cezar de Azevedo; de Souza, Silvana Sant'Anna; Catta-Preta, Carolina Moura Costa; Silva, Rosane; Klein, Cecilia Coimbra; de Almeida, Luiz Gonzaga Paula; de Lima Cunha, Oberdan; Ciapina, Luciane Prioli; Brocchi, Marcelo; Colabardini, Ana Cristina (2013). "Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family". PLOS ONE. 8 (4): e60209. Bibcode:2013PLoSO...860209M. doi: 10.1371/journal.pone.0060209 . PMC   3616161 . PMID   23560078.
  12. de Souza, W.; Motta, M. C. (1999). "Endosymbiosis in protozoa of the Trypanosomatidae family". FEMS Microbiology Letters. 173 (1): 1–8. doi: 10.1111/j.1574-6968.1999.tb13477.x . PMID   10220875.
  13. Loyola-Machado, Ana Carolina; Azevedo-Martins, Allan Cézar; Catta-Preta, Carolina Moura Costa; de Souza, Wanderley; Galina, Antonio; Motta, Maria Cristina M. (2017). "The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis". Protist. 168 (2): 253–269. doi:10.1016/j.protis.2017.02.001. PMID   28371652.
  14. 1 2 Brum, Felipe Lopes; Catta-Preta, Carolina Moura Costa; de Souza, Wanderley; Schenkman, Sergio; Elias, Maria Carolina; Motta, Maria Cristina Machado (2014). "Structural characterization of the cell division cycle in Strigomonas culicis, an endosymbiont-bearing trypanosomatid". Microscopy and Microanalysis. 20 (1): 228–237. Bibcode:2014MiMic..20..228B. doi:10.1017/S1431927613013925. PMID   24397934. S2CID   29468549.