Rozellida

Last updated

Rozellida
Rozella allomycis2.jpg
Rozella allomycis parasitizing the chytrid Allomyces sp.
Scientific classification
Domain:
(unranked):
(unranked):
Kingdom:
Phylum:
Rozellomycota

James & Berbee 2011 ex Doweld 2013 [1]
Class:
Rozellidea

Cavalier-Smith 2013
Order:
Rozellida

Cavalier-Smith 2013 non Lara et al. 2010
Family:
Rozellidae

Cavalier-Smith 2013
Genus
Synonyms
  • Phylum
    • Cryptomycota Jones & Richards 2011 em. Karpov & Aleoshin 2014
    • Rozellida Lara et al. 2010 non Cavalier-Smith 2013
    • Rozellosporidia Karpov 2017
    • Rozellomycotina Tedersoo et al. 2018
  • Class
    • "Rozellomycetes" Tedersoo 2017
  • Order
    • Rozellales Corsaro 2022
  • Family
    • Rozellaceae Doweld 2013
    • Skirgielliaceae Doweld 2014

Cryptomycota ('hidden fungi'), Rozellida, or Rozellomycota are a clade of micro-organisms that are either fungi or a sister group to fungi. They differ from classical fungi in that they lack chitinous cell walls at any trophic stage in their lifecycle, as reported by Jones and colleagues in 2011. [2] [3] Despite their unconventional feeding habits,[ clarification needed ] chitin has been observed in the inner layer of resting spores, and in immature resting spores for some species of Rozella , as indicated with calcofluor-white stain as well as the presence of a fungal-specific chitin synthase gene. [4]

Rozellida were first detected as DNA sequences retrieved from a freshwater laboratory enclosure. Phylogenetic analysis of these sequences formed a unique terminal clade of then unknown affiliation provisionally called after the first clone in the clade: LKM11. [5]

The only formally described genus in the clade is Rozella, which was previously considered a chytrid. The existence of related organisms was known from environmental DNA sequences. [6]

Additional members of the group were isolated in 2011 by a team led by Thomas Richards, from the Natural History Museum in London, and also an evolutionary geneticist at the University of Exeter, UK. The team used DNA techniques to disclose the existence of unknown genetic material dredged from the university pond. Once they had a few unknown sequences they fluorescently labeled small DNA sequences and let them bind to the matching DNA in the whole sample (fluorescence in situ hybridization). Under fluorescence microscopy, they could see that the possessor cells were ovoid in shape and 3–5 micrometres across. They then established that the cryptomycota were present in other samples taken from further freshwater environments, soils and marine sediments. [7] [8]

The common characteristic of the clade members is that they lack the chitinous cell walls present in almost all previously discovered fungi (including microsporidia) and which are a major feature of the kingdom. Without the chitin the cryptomycota can be phagotrophic parasites that feed by attaching to, engulfing, or living inside other cells. Most known fungi feed by osmotrophy—taking in nutrients from outside the cell. [7]

Phylogeny

Phylogeny of Rozellomycota [9]

Fungi

Aphelidiomycota

Eumycota

Rozellomyceta
Rozellomycota

Rozella

Microsporidiomycota

Mitosporidium

Morellospora

Paramicrosporidium

Nucleophaga

Microsporidia

Related Research Articles

<span class="mw-page-title-main">Chitinase</span> Enzymes which degrade or break chitin

Chitinases are hydrolytic enzymes that break down glycosidic bonds in chitin. They catalyse the following reaction:

<span class="mw-page-title-main">Ascomycota</span> Division or phylum of fungi

Ascomycota is a phylum of the kingdom Fungi that, together with the Basidiomycota, forms the subkingdom Dikarya. Its members are commonly known as the sac fungi or ascomycetes. It is the largest phylum of Fungi, with over 64,000 species. The defining feature of this fungal group is the "ascus", a microscopic sexual structure in which nonmotile spores, called ascospores, are formed. However, some species of Ascomycota are asexual and thus do not form asci or ascospores. Familiar examples of sac fungi include morels, truffles, brewers' and bakers' yeast, dead man's fingers, and cup fungi. The fungal symbionts in the majority of lichens such as Cladonia belong to the Ascomycota.

<span class="mw-page-title-main">Opisthokont</span> Group of eukaryotes which includes animals and fungi, among other groups

The opisthokonts are a broad group of eukaryotes, including both the animal and fungus kingdoms. The opisthokonts, previously called the "Fungi/Metazoa group", are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.

<span class="mw-page-title-main">Arbuscular mycorrhiza</span> Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza (AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules. Arbuscular mycorrhiza is a type of endomycorrhiza along with ericoid mycorrhiza and orchid mycorrhiza .They are characterized by the formation of unique tree-like structures, the arbuscules. In addition, globular storage structures called vesicles are often encountered.

<span class="mw-page-title-main">Microsporidia</span> Phylum of fungi

Microsporidia are a group of spore-forming unicellular parasites. These spores contain an extrusion apparatus that has a coiled polar tube ending in an anchoring disc at the apical part of the spore. They were once considered protozoans or protists, but are now known to be fungi, or a sister group to fungi. These fungal microbes are obligate eukaryotic parasites that use a unique mechanism to infect host cells. They have recently been discovered in a 2017 Cornell study to infect Coleoptera on a large scale. So far, about 1500 of the probably more than one million species are named. Microsporidia are restricted to animal hosts, and all major groups of animals host microsporidia. Most infect insects, but they are also responsible for common diseases of crustaceans and fish. The named species of microsporidia usually infect one host species or a group of closely related taxa. Approximately 10 percent of the species are parasites of vertebrates —several species, most of which are opportunistic, can infect humans, in whom they can cause microsporidiosis.

<span class="mw-page-title-main">Glomeromycota</span> Phylum of fungi

Glomeromycota are one of eight currently recognized divisions within the kingdom Fungi, with approximately 230 described species. Members of the Glomeromycota form arbuscular mycorrhizas (AMs) with the thalli of bryophytes and the roots of vascular land plants. Not all species have been shown to form AMs, and one, Geosiphon pyriformis, is known not to do so. Instead, it forms an endocytobiotic association with Nostoc cyanobacteria. The majority of evidence shows that the Glomeromycota are dependent on land plants for carbon and energy, but there is recent circumstantial evidence that some species may be able to lead an independent existence. The arbuscular mycorrhizal species are terrestrial and widely distributed in soils worldwide where they form symbioses with the roots of the majority of plant species (>80%). They can also be found in wetlands, including salt-marshes, and associated with epiphytic plants.

<span class="mw-page-title-main">Erysiphales</span> Order of fungi

Erysiphales are an order of ascomycete fungi. The order contains one family, Erysiphaceae. Many of them cause plant diseases called powdery mildew.

<i>Ophiocordyceps unilateralis</i> Species of fungus

Ophiocordyceps unilateralis, commonly known as zombie-ant fungus, is an insect-pathogenic fungus, discovered by the British naturalist Alfred Russel Wallace in 1859, and currently found predominantly in tropical forest ecosystems. O. unilateralis infects ants of the tribe Camponotini, with the full pathogenesis being characterized by alteration of the behavioral patterns of the infected ant. Infected hosts leave their canopy nests and foraging trails for the forest floor, an area with a temperature and humidity suitable for fungal growth; they then use their mandibles to attach themselves to a major vein on the underside of a leaf, where the host remains after its eventual death. The process, leading up to mortality, takes 4–10 days, and includes a reproductive stage where fruiting bodies grow from the ant's head, rupturing to release the fungus's spores. O. unilateralis is, in turn, also susceptible to fungal infection itself, an occurrence that can limit its impact on ant populations, which has otherwise been known to devastate ant colonies.

<span class="mw-page-title-main">Hydnellum peckii</span> Species of fungus

Hydnellum peckii is a fungus in the genus Hydnellum of the family Bankeraceae. It is a hydnoid species, producing spores on the surface of vertical spines or tooth-like projections that hang from the undersurface of the fruit bodies. It is found in North America, Europe, and was recently discovered in Iran (2008) and Korea (2010). Hydnellum peckii is a mycorrhizal species, and forms mutually beneficial relationships with a variety of coniferous trees, growing on the ground singly, scattered, or in fused masses.

<span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae and either Protista or Protozoa and Chromista.

Homothallic refers to the possession, within a single organism, of the resources to reproduce sexually; i.e., having male and female reproductive structures on the same thallus. The opposite sexual functions are performed by different cells of a single mycelium.

<span class="mw-page-title-main">Geoglossaceae</span> Family of fungi

Geoglossaceae is a family of fungi in the order Geoglossales, class Geoglossomycetes. These fungi are broadly known as earth tongues. The ascocarps of most species in the family Geoglossaceae are terrestrial and are generally small, dark in color, and club-shaped with a height of 2–8 cm. The ascospores are typically light-brown to dark-brown and are often multiseptate. Other species of fungi have been known to parasitize ascocarps. The use of a compound microscope is needed for accurate identification.

<i>Rozella</i> Genus of fungi

Rozella is a fungal genus of obligate endoparasites of a variety of hosts, including Oomycota, Chytridiomycota, and Blastocladiomycota. Rozella was circumscribed by French mycologist Marie Maxime Cornu in 1872. Considered one of the earliest diverging lineages of fungi, the widespread genus contains 27 species, with the most well studied being Rozella allomycis. Rozella is a member of a large clade of fungi referred to as the Cryptomycota/Rozellomycota. While some can be maintained in dual culture with the host, most have not been cultured, but they have been detected, using molecular techniques, in soil samples, and in freshwater and marine ecosystems. Zoospores have been observed, along with cysts, and the cells of some species are attached to diatoms.

<span class="mw-page-title-main">Holomycota</span> Clade containing fungi and some protists

Holomycota or Nucletmycea are a basal Opisthokont clade as sister of the Holozoa. It consists of the Cristidiscoidea and the kingdom Fungi. The position of nucleariids, unicellular free-living phagotrophic amoebae, as the earliest lineage of Holomycota suggests that animals and fungi independently acquired complex multicellularity from a common unicellular ancestor and that the osmotrophic lifestyle was originated later in the divergence of this eukaryotic lineage. Opisthosporidians is a recently proposed taxonomic group that includes aphelids, Microsporidia and Cryptomycota, three groups of endoparasites.

<span class="mw-page-title-main">Amoebidiidae</span> Family of protozoa

Amoebidiidae is a family of single-celled eukaryotes, previously thought to be zygomycete fungi belonging to the class Trichomycetes, but molecular phylogenetic analyses place the family with the opisthokont group Mesomycetozoea. The family was originally called Amoebidiaceae, and considered the sole family of the fungal order Amoebidiales that included two genera: Amoebidium and Paramoebidium. However, Amoebidiidae is now monogeneric as it was recently emended to include only Amoebidium. Species of Amoebidium are considered obligate symbionts of freshwater-dwelling arthropod hosts such as midge larvae and water fleas (Daphnia). However, because Amoebidium species attach to the exoskeleton (exterior) of the host and grow in axenic culture, at least some species may be facultative symbionts.

<span class="mw-page-title-main">Marine fungi</span> Species of fungi that live in marine or estuarine environments

Marine fungi are species of fungi that live in marine or estuarine environments. They are not a taxonomic group, but share a common habitat. Obligate marine fungi grow exclusively in the marine habitat while wholly or sporadically submerged in sea water. Facultative marine fungi normally occupy terrestrial or freshwater habitats, but are capable of living or even sporulating in a marine habitat. About 444 species of marine fungi have been described, including seven genera and ten species of basidiomycetes, and 177 genera and 360 species of ascomycetes. The remainder of the marine fungi are chytrids and mitosporic or asexual fungi. Many species of marine fungi are known only from spores and it is likely a large number of species have yet to be discovered. In fact, it is thought that less than 1% of all marine fungal species have been described, due to difficulty in targeting marine fungal DNA and difficulties that arise in attempting to grow cultures of marine fungi. It is impracticable to culture many of these fungi, but their nature can be investigated by examining seawater samples and undertaking rDNA analysis of the fungal material found.

Thermomyces lanuginosus is a species of thermophilic fungus that belongs to Thermomyces, a genus of hemicellulose degraders. It is classified as a deuteromycete and no sexual form has ever been observed. It is the dominant fungus of compost heaps, due to its ability to withstand high temperatures and use complex carbon sources for energy. As the temperature of compost heaps rises and the availability of simple carbon sources decreases, it is able to out compete pioneer microflora. It plays an important role in breaking down the hemicelluloses found in plant biomass due to the many hydrolytic enzymes that it produces, such as lipolase, amylase, xylanase, phytase, and chitinase. These enzymes have chemical, environmental, and industrial applications due to their hydrolytic properties. They are used in the food, petroleum, pulp and paper, and animal feed industries, among others. A few rare cases of endocarditis due to T. lanuginosus have been reported in humans.

<span class="mw-page-title-main">Opisthosporidia</span> Clade of fungi

Opisthosporidia is a superphylum of intracellular parasites with amoeboid vegetative stage, defined as a common group of eukaryotic groups Microsporidia, Cryptomycota and Aphelidea. They have been considered to represent a monophyletic lineage with shared ecological and structural features, being a sister clade of the Fungi. Together with the Fungi they represent a sister clade of the Cristidiscoidea, together forming the Holomycota.

Oidiodendron cereale is a species of ascomycetes fungi in the order Helotiales. This fungus is found globally in temperate climates where average summer temperatures are below 25 °C, but there have been scattered reports from tropical and subtropical environments. It is predominantly found in soil, but little is known regarding their ecological roles in nature. However, an enzymatic study from Agriculture Canada showed that O. cereale can break down a variety of plant, fungal, and animal based substrates found in soil, which may have beneficial effects for plants. On rare occasions, this fungus is found on human skin and hair. There has been one reported case of O. cereale infection in 1969, causing Neurodermitis Nuchae.

Torpedosporaceae is a monotypic family of ascomycetous marine based fungi within the order of Torpedosporales in the subclass Hypocreomycetidae and within the class Sordariomycetes. They are saprobic on intertidal mangrove wood and roots, bark leaves, and sand in various marine habitats.

References

  1. Karpov; et al. (2014). "Morphology, phylogeny and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia". Frontiers in Microbiology. 5: 112. doi: 10.3389/fmicb.2014.00112 . PMC   3975115 . PMID   24734027.
  2. Jones MD, Richards TA, Hawksworth DL, Bass D (2011). "Validation and justification of the phylum name Cryptomycota phyl. nov". IMA Fungus. 2 (2): 173–7. doi: 10.5598/imafungus.2011.02.02.08 . PMC   3359815 . PMID   22679602.
  3. Jones MD, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011). "Discovery of novel intermediate forms redefines the fungal tree of life". Nature. 474 (7350): 200–3. doi:10.1038/nature09984. PMID   21562490. S2CID   4412818.
  4. James TY, Berbee ML (2011). "No jacket required—New fungal lineage defies dress code". BioEssays. 34 (2): 94–102. doi: 10.1002/bies.201100110 . hdl: 2027.42/90101 . PMID   22131166. S2CID   12406213.
  5. van Hannen EJ, Mooij W, van Agterveld MP, Gons HJ, Laanbroek HJ (1999). "Detritus-dependent development of the microbial community in an experimental system: Qualitative analysis by denaturing gradient gel electrophoresis". Applied and Environmental Microbiology. 65 (6): 2478–84. Bibcode:1999ApEnM..65.2478V. doi: 10.1128/AEM.65.6.2478-2484.1999 . PMC   91365 . PMID   10347030.
  6. Lara E, Moreira D, López-García P (2010). "The environmental clade LKM11 and Rozella form the deepest branching clade of fungi" (PDF). Protist. 161 (1): 116–21. doi:10.1016/j.protis.2009.06.005. PMID   19674933.
  7. 1 2 Turner M. (11 May 2011). "The evolutionary tree of fungi grows a new branch". Nature News. doi: 10.1038/news.2011.285 .
  8. Ghosh P. (11 May 2011). "'Missing link' fungi found in Devon pond". BBC News. Retrieved 2014-10-31.
  9. Wijayawardene NN, Hyde KD, Al-Ani LK, Tedersoo L, Haelewaters D, Rajeshkumar KC, et al. (2020). "Outline of Fungi and fungus-like taxa" (PDF). Mycosphere. 11 (1): 1060–1456. doi: 10.5943/mycosphere/11/1/8 . ISSN   2077-7019.