Epibiont

Last updated
The blowholes of a gray whale, with barnacle epibionts GrayWhaleByPhilKonstantin.jpg
The blowholes of a gray whale, with barnacle epibionts
The tabulate coral Aulopora attached to the brachiopod Strophodonta, from the Middle Devonian of Wisconsin Aulopora.jpg
The tabulate coral Aulopora attached to the brachiopod Strophodonta, from the Middle Devonian of Wisconsin

An epibiont (from the Ancient Greek meaning "living on top of") is an organism that lives on the surface of another living organism, called the basibiont ("living underneath"). [1] [2] The interaction between the two organisms is called epibiosis. An epibiont is, by definition, harmless to its host. In this sense, the interaction between the two organisms can be considered neutralistic or commensalistic; as opposed to being, for example, parasitic, in which case one organism benefits at the expense of the other, or mutualistic, in which both organisms obtain some explicit benefit from their coexistence. These organisms have evolved various adaptations to exploit their hosts for protection, transportation, or access to resources. Examples of common epibionts are bacteria, [3] barnacles, remoras, and algae, many of which live on the surfaces of larger marine organisms such as whales, sharks, sea turtles, and mangrove trees.

Contents

Although there is no direct effect of the epibiont to the host, there are often indirect effects resulting from this interaction and change in the surface of the host. This has been found to be especially important to marine organisms and aquatic ecosystems, as surface qualities do impact necessary ecological functions such as drag, radiation absorption, nutrient uptake, etc. [4]

Types

Adaptations and Mechanisms

Epibionts and their basibiont

Further examples

Pagurus bernhardus and its epibionts

Pagurus bernhardus foraging at night. Hermit crab from Andaman.jpg
Pagurus bernhardus foraging at night.

P. bernhardus, or hermit crabs, acts as basibionts to many species of varying protozoa, hydrozoa, entoprocts, cirripeds, and polychaetes. The different types of epibionts are found on either the crab, the shell, or both the crab and the shell. In a study done over the course of two years, densities and diversity of epibionts were measured and considered. Multiple studies have found that P. bernardus in shells colonized with epibionts were likely to survive longer in laboratory settings when attacked by predators. [9]


See also

Related Research Articles

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualistic relationship. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Symbiosis</span> Close, long-term biological interaction between distinct organisms (usually species)

Symbiosis is any type of a close and long-term biological interaction between two biological organisms of different species, termed symbionts, be it mutualistic, commensalistic, or parasitic. In 1879, Heinrich Anton de Bary defined it as "the living together of unlike organisms". The term is sometimes used in the more restricted sense of a mutually beneficial interaction in which both symbionts contribute to each other's support.

<span class="mw-page-title-main">Epiphyte</span> Non-parasitic surface organism that grows upon another plant but is not nourished by it

An epiphyte is a plant or plant-like organism that grows on the surface of another plant and derives its moisture and nutrients from the air, rain, water or from debris accumulating around it. The plants on which epiphytes grow are called phorophytes. Epiphytes take part in nutrient cycles and add to both the diversity and biomass of the ecosystem in which they occur, like any other organism. They are an important source of food for many species. Typically, the older parts of a plant will have more epiphytes growing on them. Epiphytes differ from parasites in that they grow on other plants for physical support and do not necessarily affect the host negatively. An organism that grows on another organism that is not a plant may be called an epibiont. Epiphytes are usually found in the temperate zone or in the tropics. Epiphyte species make good houseplants due to their minimal water and soil requirements. Epiphytes provide a rich and diverse habitat for other organisms including animals, fungi, bacteria, and myxomycetes.

<span class="mw-page-title-main">Commensalism</span> Beneficial symbiosis between species

Commensalism is a long-term biological interaction (symbiosis) in which members of one species gain benefits while those of the other species neither benefit nor are harmed. This is in contrast with mutualism, in which both organisms benefit from each other; amensalism, where one is harmed while the other is unaffected; and parasitism, where one is harmed and the other benefits.

<span class="mw-page-title-main">Ectosymbiosis</span> Symbiosis in which the symbiont lives on the body surface of the host

Ectosymbiosis is a form of symbiotic behavior in which an organism lives on the body surface of another organism, including internal surfaces such as the lining of the digestive tube and the ducts of glands. The ectosymbiotic species, or ectosymbiont, is generally an immobile organism existing off of biotic substrate through mutualism, commensalism, or parasitism. Ectosymbiosis is found throughout a diverse array of environments and in many different species.

<span class="mw-page-title-main">Host (biology)</span> Organism that harbours another organism

In biology and medicine, a host is a larger organism that harbours a smaller organism; whether a parasitic, a mutualistic, or a commensalist guest (symbiont). The guest is typically provided with nourishment and shelter. Examples include animals playing host to parasitic worms, cells harbouring pathogenic (disease-causing) viruses, or a bean plant hosting mutualistic (helpful) nitrogen-fixing bacteria. More specifically in botany, a host plant supplies food resources to micropredators, which have an evolutionarily stable relationship with their hosts similar to ectoparasitism. The host range is the collection of hosts that an organism can use as a partner.

<span class="mw-page-title-main">Hermit crab</span> Superfamily of crustaceans (Paguroidea)

Hermit crabs are anomuran decapod crustaceans of the superfamily Paguroidea that have adapted to occupy empty scavenged mollusc shells to protect their fragile exoskeletons. There are over 800 species of hermit crab, most of which possess an asymmetric abdomen concealed by a snug-fitting shell. Hermit crabs' soft (non-calcified) abdominal exoskeleton means they must occupy shelter produced by other organisms or risk being defenseless.

<span class="mw-page-title-main">Tide pool</span> Rocky pool on a seashore, separated from the sea at low tide, filled with seawater

A tide pool or rock pool is a shallow pool of seawater that forms on the rocky intertidal shore. These pools typically range from a few inches to a few feet deep and a few feet across. Many of these pools exist as separate bodies of water only at low tide, as seawater gets trapped when the tide recedes. Tides are caused by the gravitational pull of the sun and moon. A tidal cycle is usually about 25 hours and consists of one or two high tides and two low tides.

<i>Pagurus bernhardus</i> Species of crustacean

Pagurus bernhardus is the common marine hermit crab of Europe's Atlantic coasts. It is sometimes referred to as the common hermit crab or soldier crab. Its carapace reaches 3.5 centimetres (1.4 in) long, and is found in both rocky and sandy areas, from the Arctic waters of Iceland, Svalbard and Russia as far south as southern Portugal, but its range does not extend as far as the Mediterranean Sea. It can be found in pools on the upper shore and at the mean tide level down to a depth of approximately 140 metres (460 ft), with smaller specimens generally found in rock pools around the middle shore and lower shore regions, with larger individuals at depth. P. bernhardus is an omnivorous detritivore that opportunistically scavenges for carrion, and which can also filter feed when necessary.

Ecological facilitation or probiosis describes species interactions that benefit at least one of the participants and cause harm to neither. Facilitations can be categorized as mutualisms, in which both species benefit, or commensalisms, in which one species benefits and the other is unaffected. This article addresses both the mechanisms of facilitation and the increasing information available concerning the impacts of facilitation on community ecology.

Cyanobionts are cyanobacteria that live in symbiosis with a wide range of organisms such as terrestrial or aquatic plants; as well as, algal and fungal species. They can reside within extracellular or intracellular structures of the host. In order for a cyanobacterium to successfully form a symbiotic relationship, it must be able to exchange signals with the host, overcome defense mounted by the host, be capable of hormogonia formation, chemotaxis, heterocyst formation, as well as possess adequate resilience to reside in host tissue which may present extreme conditions, such as low oxygen levels, and/or acidic mucilage. The most well-known plant-associated cyanobionts belong to the genus Nostoc. With the ability to differentiate into several cell types that have various functions, members of the genus Nostoc have the morphological plasticity, flexibility and adaptability to adjust to a wide range of environmental conditions, contributing to its high capacity to form symbiotic relationships with other organisms. Several cyanobionts involved with fungi and marine organisms also belong to the genera Richelia, Calothrix, Synechocystis, Aphanocapsa and Anabaena, as well as the species Oscillatoria spongeliae. Although there are many documented symbioses between cyanobacteria and marine organisms, little is known about the nature of many of these symbioses. The possibility of discovering more novel symbiotic relationships is apparent from preliminary microscopic observations.

<i>Daphnia pulex</i> Species of small freshwater animal

Daphnia pulex is the most common species of water flea. It has a cosmopolitan distribution: the species is found throughout the Americas, Europe, and Australia. It is a model species, and was the first crustacean to have its genome sequenced.

<i>Calliactis parasitica</i> Species of sea anemone

Calliactis parasitica is a species of sea anemone associated with hermit crabs. It lives in the eastern Atlantic Ocean and Mediterranean Sea at depths between the intertidal zone and 60 m (200 ft). It is up to 10 cm × 8 cm in size, with up to 700 tentacles, and is very variable in colour. The relationship between C. parasitica and the hermit crab is mutualistic: the sea anemone protects the hermit crab with its stings, and benefits from the food thrown up by the hermit crab's movements.

Epiphytic bacteria are bacteria which live non-parasitically on the surface of a plant on various organs such as the leaves, roots, flowers, buds, seeds and fruit. In current studies it has been determined that epiphytic bacteria generally don't harm the plant, but promote the formation of ice crystals. Some produce an auxin hormone which promotes plant growth and plays a role in the life cycle of the bacteria.

A habitat cascade is a common type of a facilitation cascade. where “indirect positive effects on focal organisms are mediated by successive formation or modification of biogenic habitat”.

<i>Diogenes heteropsammicola</i> Species of crustaceans

Diogenes heteropsammicola is a species of hermit crab discovered during samplings between 2012 and 2016 in the shallow waters of the Japanese Amami Islands. This D. heteropsammicola is strongly associated with the walking corals. This hermit crab species is unique due to the discovery that they use living, growing coral as a shell. The live in the inside of the coral and vary from other types of hermits. Crustaceans of this type commonly replace their shell as the organism grows in size, but D. heteropsammicola are the first of their kind to use solitary corals as a shell form. Heteropsammia and Heterocyathus are the two solitary corals that this hermit species has been observed as occupying. These two coral species are also used as a home by symbiotic Sipuncula of the genus Aspidosiphon, which normally occupy the corals that were previously occupied by crabs.

<i>Pagurus acadianus</i> Species of crustacean

Pagurus acadianus, the Acadian hermit crab, is a species of hermit crab in the family Paguridae. It is found in Western Atlantic Ocean.

<i>Neanthes fucata</i> Species of annelid worm

Neanthes fucata is a species of marine polychaete worm in the family Nereididae. It lives in association with a hermit crab such as Pagurus bernhardus. It occurs in the northeastern Atlantic Ocean, the North Sea and the Mediterranean Sea.

<i>Pagurus dalli</i> Species of crustacean

Pagurus dalli, commonly known as the whiteknee hermit or whiteknee hermit crab, is a species of hermit crab in the family Paguridae. It is found in the northeastern Pacific Ocean at depths down to about 276 m (900 ft). It usually lives in a mutualistic symbiosis with a sponge, or sometimes a hydroid.

<i>Clistosaccus</i> Genus of barnacles

Clistosaccus is a genus of barnacles which are parasitic on hermit crabs. It is a monotypic genus, and the single species is Clistosaccus paguri, which is found in the northern Atlantic Ocean and the northern Pacific Ocean.

References

  1. Lescinsky, H. L. (2001). "Epibionts". In Derek Briggs and Peter Crowther (ed.). Palaeobiology II. Wiley-Blackwell. pp. 460–63. doi:10.1002/9780470999295.ch112. ISBN   978-0-632-05149-6.
  2. Gregorio Fernandez-Leborans; Yukio Hanamura; Ryon Siow; Phaik-Ean Chee (2009). "Intersite epibiosis characterization on dominant mangrove crustacean species from Malaysia". Contributions to Zoology . 78 (1): 9–23. doi:10.1163/18759866-07801002. S2CID   58942621. Archived from the original on 2013-06-16.
  3. Jiang, Lijing (2020). ""Candidatus Desulfobulbus rimicarensis," an Uncultivated Deltaproteobacterial Epibiont from the Deep-Sea Hydrothermal Vent Shrimp Rimicaris exoculata". Applied and Environmental Microbiology. 86 (8): 02549–19. Bibcode:2020ApEnM..86E2549J. doi: 10.1128/AEM.02549-19 . PMC   7117923 . PMID   32060020.
  4. Martin Wahl (2008). "Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment". The Journal of Bioadhesion and Biofilm Research. 24 (6): 427–38. Bibcode:2008Biofo..24..427W. doi:10.1080/08927010802339772. PMID   18686057. S2CID   27804881.
  5. de Almeida Alves-Júnior, Flavio; Martins, Déborah Elena Galvão; de Araújo Silva, Kátia Cristina; de Macedo Klautau, Alex Garcia Cavalleiro; Cintra, Israel Hidenburgo Aniceto (2022-10-03). "Barnacles as Epibionts in Crustaceans from the Great Amazon Reef System (GARS) Northern of Brazil: New Records and New Host Associations". Thalassas: An International Journal of Marine Sciences. 38 (2): 1371–1378. Bibcode:2022TIJMS..38.1371D. doi:10.1007/s41208-022-00480-y. ISSN   0212-5919. S2CID   251556347.
  6. Xu, Yunxin; Shi, Weichao; Arredondo-Galeana, Abel; Mei, Lei; Demirel, Yigit Kemal (2021-07-21). "Understanding of remora's "hitchhiking" behaviour from a hydrodynamic point of view". Scientific Reports. 11 (1): 14837. Bibcode:2021NatSR..1114837X. doi:10.1038/s41598-021-94342-x. ISSN   2045-2322. PMC   8295263 . PMID   34290347.
  7. Barea-Arco, J. (2001). "Evidence of a mutualistic relationship between an algal epibiont and its host, Daphnia pulicaria". Limnology and Oceanography. 46 (4): 871–81. Bibcode:2001LimOc..46..871B. doi:10.4319/lo.2001.46.4.0871. S2CID   85419053.
  8. Fernandez-Leborans, Gregorio (January 2006). "Inter-annual variability of the epibiotic community on Pagurus bernhardus from Scotland". Estuarine, Coastal and Shelf Science. 66 (1–2): 35–54. Bibcode:2006ECSS...66...35F. doi:10.1016/j.ecss.2005.07.016.
  9. Brooks, William (1985-04-18). "Protection of the hermit crab Pagurus pollicaris say from predators by hydroid-colonized shells". Journal of Experimental Marine Biology and Ecology. 87 (2): 111–118. doi:10.1016/0022-0981(85)90084-X.