Veillonella

Last updated

Veillonella
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Veillonella

Prévot 1933
Type species
Veillonella parvula
(Veillon & Zuber 1898) Prévot 1933
Species

See text

Synonyms

"Syzygiococcus" Herzberg 1928

Veillonella are Gram-negative bacteria (Gram stain pink) anaerobic cocci, unlike most Bacillota, which are Gram-positive bacteria. [1] This bacterium is well known for its lactate fermenting abilities. It is a normal bacterium in the intestines and oral mucosa of mammals. In humans they have been implicated in cases of osteomyelitis and endocarditis, for example with the species Veillonella parvula .

Contents

Veillonella dispar is the most nitrate-reducing bacterium in the oral cavity, which is beneficially anti-bacterial. [2]

When Veillonella is responsible for clinical infections in humans, it should be kept in mind that more than 70% of the strains are resistant to penicillin, while more than 95% of the strains are susceptible to amoxicillin/clavulanate. [3]

Previous studies have shown that exercise is associated with changes in microbiome composition. Specifically, Veillonella, Bacteroides, Prevotella, Methanobrevibacter, and Akkermansiaceae are in more abundance in endurance athletes. [4] [5] Specifically, one study has proposed that V. atypica is beneficial for endurance performance because the high-lactate environment of the athlete provides a selective advantage for colonization by lactate metabolizing organisms, such as Veillonella. [6] Previous studies in mice have shown that propionate increases heart rate variability (HRV) and VO2 max. [7] [8] It also raises the resting energy expenditure and lipid oxidation in fasted humans. [9] These modifications are beneficial for athletes because an increase in HRV indicates that the body is adapting to the exercise stimuli, indicating an increase in fitness. [10] Also, a higher VO2 max allows the athlete to produce more energy which allows them to do more work and an increase in lipid oxidation delays glycogen depletion. [11] [12]

Fermentation

Lactate is fermented to propionate and acetate by the methylmalonyl-CoA pathway. Little ATP is produced in this fermentation. High substrate affinity is suggested to be the reason.

3 Lactate → acetate + 2 propionate + CO
2
+ H
2
O

A study of Veillonella in endurance athletes found that a relative abundance of the bacteria in the gut is associated with increased treadmill run time performance. This effect was demonstrated to be due to the organism's propionate metabolite produced from lactic acid. [13]

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [14] and National Center for Biotechnology Information (NCBI) [15]

16S rRNA based LTP_08_2023 [16] [17] [18] 120 marker proteins based GTDB 07-RS207 [19] [20] [21]

V. montpellierensisJumas-Bilak et al. 2004

V. magnaKraatz and Taras 2008

V. criceti(Rogosa 1965) Mays et al. 1982

V. ratti(Rogosa 1965) Mays et al. 1982 emend. Kraatz and Taras 2008

V. seminalisAujoulat et al. 2014

V. caviaeMays et al. 1982

V. dispar(Rogosa 1965) Mays et al. 1982

V. infantiumMashima et al. 2018

V. tobetsuensisMashima et al. 2013

V. parvula (Veillon and Zuber 1898) Prévot 1933 Mays et al. 1982

V. rogosaeArif et al. 2008

V. atypica(Rogosa 1965) Mays et al. 1982

V. hominisLiu et al. 2022

V. denticariosiByun et al. 2007

V. rodentium(Rogosa 1965) Mays et al. 1982

V. magna

V. criceti

V. ratti

V. seminalis

V. montpellierensis

V. caviae

V. atypica

V. tobetsuensis

V. denticariosi

V. rodentium

V. parvula

V. rogosae

V. dispar

V. infantium

V. nakazawaeMishima et al. 2020

Unassigned species:

Infections and Treatment

Meningitis, osteomyelitis, periodontitis, and endocarditis are infections that can be caused by V. parvula. [22] [23] [24] [25] [26] [27] Prosthetic joint infection and endocarditis have been shown to be caused by V. dispar. [28] [29] Although very rare, endocarditis has also been caused by V. montpellierensis and V. alcalescens. [29]

A large percentage of Veillonella species are resistant to penicillin. [30] Antibiotics that Veillonella species are less resistant to or not resistant to at all include clindamycin, metronidazole, imipenem, ceftriaxone, and amoxicillin. [31] [32] [33] [34]

See also

Related Research Articles

An anaerobic organism or anaerobe is any organism that does not require molecular oxygen for growth. It may react negatively or even die if free oxygen is present. In contrast, an aerobic organism (aerobe) is an organism that requires an oxygenated environment. Anaerobes may be unicellular or multicellular. Most fungi are obligate aerobes, requiring oxygen to survive. However, some species, such as the Chytridiomycota that reside in the rumen of cattle, are obligate anaerobes; for these species, anaerobic respiration is used because oxygen will disrupt their metabolism or kill them. The sea floor is possibly one of the largest accumulation of anaerobic organisms on our planet, where microbes are primarily concentrated around hydrothermal vents. These microbes produce energy in absence of sunlight or oxygen through a process called chemosynthesis, where by inorganic compounds such as hydrogen gas, hydrogen sulfide or ferrous ions are converted into organic matter.

The HACEK organisms are a group of fastidious Gram-negative bacteria that are an unusual cause of infective endocarditis, which is an inflammation of the heart due to bacterial infection. HACEK is an abbreviation of the initials of the genera of this group of bacteria: Haemophilus, Aggregatibacter, Cardiobacterium, Eikenella, Kingella. The HACEK organisms are a normal part of the human microbiota, living in the oral-pharyngeal region.

<i>Campylobacter jejuni</i> Species of bacterium

Campylobacter jejuni is a species of pathogenic bacteria that is commonly associated with poultry, and is also often found in animal feces. This species of microbe is one of the most common causes of food poisoning in Europe and in the US, with the vast majority of cases occurring as isolated events rather than mass outbreaks. Active surveillance through the Foodborne Diseases Active Surveillance Network (FoodNet) indicates that about 20 cases are diagnosed each year for each 100,000 people in the US, while many more cases are undiagnosed or unreported; the CDC estimates a total of 1.5 million infections every year. The European Food Safety Authority reported 246,571 cases in 2018, and estimated approximately nine million cases of human campylobacteriosis per year in the European Union. Campylobacter jejuni infections are increasing at an alarming rate in Europe, North America, and Australia. In Africa, Asia, and the Middle East, data indicates that C. jejuni infections are endemic.

<span class="mw-page-title-main">Osteomyelitis</span> Infection of the bones

Osteomyelitis (OM) is an infection of bone. Symptoms may include pain in a specific bone with overlying redness, fever, and weakness. The long bones of the arms and legs are most commonly involved in children e.g. the femur and humerus, while the feet, spine, and hips are most commonly involved in adults.

<span class="mw-page-title-main">Blood culture</span> Test to detect bloodstream infections

A blood culture is a medical laboratory test used to detect bacteria or fungi in a person's blood. Under normal conditions, the blood does not contain microorganisms: their presence can indicate a bloodstream infection such as bacteremia or fungemia, which in severe cases may result in sepsis. By culturing the blood, microbes can be identified and tested for resistance to antimicrobial drugs, which allows clinicians to provide an effective treatment.

Multiple drug resistance (MDR), multidrug resistance or multiresistance is antimicrobial resistance shown by a species of microorganism to at least one antimicrobial drug in three or more antimicrobial categories. Antimicrobial categories are classifications of antimicrobial agents based on their mode of action and specific to target organisms. The MDR types most threatening to public health are MDR bacteria that resist multiple antibiotics; other types include MDR viruses, parasites.

Staphylococcus lugdunensis is a coagulase-negative member of the genus Staphylococcus, consisting of Gram-positive bacteria with spherical cells that appear in clusters.

<i>Bacteroides</i> Genus of bacteria

Bacteroides is a genus of Gram-negative, obligate anaerobic bacteria. Bacteroides species are non endospore-forming bacilli, and may be either motile or nonmotile, depending on the species. The DNA base composition is 40–48% GC. Unusual in bacterial organisms, Bacteroides membranes contain sphingolipids. They also contain meso-diaminopimelic acid in their peptidoglycan layer.

<i>Eikenella corrodens</i> Species of bacterium

Eikenella corrodens is a Gram-negative facultative anaerobic bacillus that can cause severe invasive disease in humans. It was first identified by M. Eiken in 1958, who called it Bacteroides corrodens. E. corrodens is a rare pericarditis associated pathogen. It is a fastidious, slow growing, human commensal bacillus, capable of acting as an opportunistic pathogen and causing abscesses in several anatomical sites, including the liver, lung, spleen, and submandibular region. E. corrodens could independently cause serious infection in both immunocompetent and immunocompromised hosts.

<span class="mw-page-title-main">Oritavancin</span> Pharmaceutical drug

Oritavancin, sold under the brand name Orbactiv among others, is a semisynthetic glycopeptide antibiotic medication for the treatment of serious Gram-positive bacterial infections. Its chemical structure as a lipoglycopeptide is similar to vancomycin.

<i>Methanobrevibacter smithii</i> Species of archaeon

Methanobrevibacter smithii is the predominant methanogenic archaeon in the microbiota of the human gut. M. smithii has a coccobacillus shape. It plays an important role in the efficient digestion of polysaccharides (complex sugars) by consuming the end products of bacterial fermentation (H2, acetate, formate to some extant). M. smithii is a hydrogenotrophic methanogen that utilizes hydrogen by combining it with carbon dioxide to form methane. The removal of hydrogen by M. smithii is thought to allow an increase in the extraction of energy from nutrients by shifting bacterial fermentation to more oxidized end products.

<i>Kingella kingae</i> Species of bacterium

Kingella kingae is a species of Gram-negative facultative anaerobic β-hemolytic coccobacilli. First isolated in 1960 by Elizabeth O. King, it was not recognized as a significant cause of infection in young children until the 1990s, when culture techniques had improved enough for it to be recognized. It is best known as a cause of septic arthritis, osteomyelitis, spondylodiscitis, bacteraemia, and endocarditis, and less frequently lower respiratory tract infections and meningitis.

Cardiobacterium hominis /ˌkɑːrdiəʊbækˈtɪəriəm ˈhɒmɪnɪs/ is a microaerophilic, pleomorphic, fastidious, Gram-negative bacterium part of the Cardiobacteriaceae family and the HACEK group. It is most commonly found in the human microbiota, specifically the oropharyngeal region including the mouth and upper part of the respiratory tract. It is one of the causes of endocarditis, a life-threatening inflammation close to the heart's inner lining and valves. While infections caused by Cardiobacterium hominis are uncommon, various clinical manifestations are linked to the bacterium, including meningitis, septicemia, and bone infections.

Prevotella is a genus of Gram-negative bacteria.

<i>Veillonella parvula</i> Species of bacterium

Veillonella parvula is a strictly anaerobic, Gram-negative, coccus-shaped bacterium in the genus Veillonella. It is a normal part of the oral flora but can be associated with diseases such as periodontitis and dental caries as well as various systemic infections, including meningitis and osteomyelitis. It has also been isolated from women with bacterial vaginosis and has been associated with hypertension together with Campylobacter rectus and Prevotella melaninogenica.

<i>Staphylococcus capitis</i> Species of bacterium

Staphylococcus capitis is a coagulase-negative species (CoNS) of Staphylococcus. It is part of the normal flora of the skin of the human scalp, face, neck, scrotum, and ears and has been associated with prosthetic valve endocarditis, but is rarely associated with native valve infection.

Clostridium innocuum is an anaerobic, non-motile, gram-positive bacterium that reproduces by sporulation. While there are over 130 species of Clostridium, C. innocuum is the third most commonly isolated. Although it is not normally considered an aggressive human pathogen, it has been isolated in some disease processes. C. innocuum and other Clostridium line the oropharynx and gastrointestinal tract, and are considered normal gut flora.

Anaerococcus is a genus of bacteria. Its type species is Anaerococcus prevotii. These bacteria are Gram-positive and strictly anaerobic. The genus Anaerococcus was proposed in 2001. Its genome was sequenced in August 2009. The genus Anaerococcus is one of six genera classified within the group GPAC. These six genera are found in the human body as part of the commensal human microbiota.

<i>Corynebacterium xerosis</i> Species of prokaryote

Corynebacterium xerosis is a Gram-positive, rod-shaped bacterium in the genus Corynebacterium. Although it is frequently a harmless commensal organism living on the skin and mucus membranes, C. xerosis is also a clinically-relevant opportunistic pathogen that has been attributed to a number of different infections in animals and humans. However, its actual prominence in human medicine is up for debate due to early difficulties distinguishing it from other Corynebacterium species in clinical isolates.

Bacteroides caccae is a saccharolytic gram-negative bacterium from the genus Bacteroides. They are obligate anaerobes first isolated from human feces in the 1980s. Prior to their discovery, they were known as the 3452A DNA homology group. The type strain is now identified as ATCC 43185.

References

  1. Megrian D, Taib N, Witwinowski J, Gribaldo S (2020). "One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide". Molecular Microbiology . 113 (3): 659–671. doi: 10.1111/mmi.14469 . PMID   31975449.
  2. Mitsui T, Saito M, Harasawa R (2018). "Salivary nitrate-nitrite conversion capacity after nitrate ingestion and incidence of Veillonella spp. in elderly individuals". Journal of Oral Science . 60 (3): 405–410. doi: 10.2334/josnusd.17-0337 . PMID   30101819.
  3. Di Bella S, Antonello RM, Sanson G, Maraolo AE, Giacobbe DR, Sepulcri C, Ambretti S, Aschbacher R, Bartolini L, Bernardo M, Bielli A (June 2022). "Anaerobic bloodstream infections in Italy (ITANAEROBY): A 5-year retrospective nationwide survey". Anaerobe. 75: 102583. doi:10.1016/j.anaerobe.2022.102583. hdl: 11368/3020691 . PMID   35568274. S2CID   248736289.
  4. Petersen LM, Bautista EJ, Nguyen H, Hanson BM, Chen L, Lek SH, Sodergren E, Weinstock GM (December 2017). "Community characteristics of the gut microbiomes of competitive cyclists". Microbiome. 5 (1): 98. doi: 10.1186/s40168-017-0320-4 . ISSN   2049-2618. PMC   5553673 . PMID   28797298.
  5. Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O'Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O'Toole PW, Molloy MG (December 2014). "Exercise and associated dietary extremes impact on gut microbial diversity". Gut. 63 (12): 1913–1920. doi:10.1136/gutjnl-2013-306541. ISSN   0017-5749. PMID   25021423.
  6. Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila-Pacheco J, Clish CB, Lessard S (July 2019). "Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism". Nature Medicine. 25 (7): 1104–1109. doi:10.1038/s41591-019-0485-4. ISSN   1078-8956. PMC   7368972 . PMID   31235964.
  7. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G (2011-05-10). "Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)". Proceedings of the National Academy of Sciences. 108 (19): 8030–8035. Bibcode:2011PNAS..108.8030K. doi: 10.1073/pnas.1016088108 . ISSN   0027-8424. PMC   3093469 . PMID   21518883.
  8. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T, Firestein SJ, Yanagisawa M, Gordon JI, Eichmann A, Peti-Peterdi J (2013-03-12). "Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation". Proceedings of the National Academy of Sciences. 110 (11): 4410–4415. Bibcode:2013PNAS..110.4410P. doi: 10.1073/pnas.1215927110 . ISSN   0027-8424. PMC   3600440 . PMID   23401498.
  9. Chambers ES, Byrne CS, Aspey K, Chen Y, Khan S, Morrison DJ, Frost G (April 2018). "Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans". Diabetes, Obesity and Metabolism. 20 (4): 1034–1039. doi:10.1111/dom.13159. ISSN   1462-8902. PMC   5873405 . PMID   29134744.
  10. Dong JG (May 2016). "The role of heart rate variability in sports physiology". Experimental and Therapeutic Medicine. 11 (5): 1531–1536. doi:10.3892/etm.2016.3104. ISSN   1792-0981. PMC   4840584 . PMID   27168768.
  11. Ranković G, Mutavdžić V, Toskić D, Preljević A, Kocić M, Nedin-Ranković G, Damjanović N (2010-02-20). "Aerobic Capacity as An Indicator in Different Kinds of Sports". Bosnian Journal of Basic Medical Sciences. 10 (1): 44–48. doi:10.17305/bjbms.2010.2734. ISSN   1840-4812. PMC   5596610 . PMID   20192930.
  12. Gemmink A, Schrauwen P, Hesselink MK (August 2020). "Exercising your fat (metabolism) into shape: a muscle-centred view". Diabetologia. 63 (8): 1453–1463. doi:10.1007/s00125-020-05170-z. ISSN   0012-186X. PMC   7351830 . PMID   32529413.
  13. Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila-Pacheco J, Clish CB, Lessard S, Church GM, Kostic AD (24 June 2019). "Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism". Nature Medicine. 25 (7): 1104–1109. doi:10.1038/s41591-019-0485-4. PMC   7368972 . PMID   31235964.
  14. J.P. Euzéby. "Veillonella". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2022-09-09.
  15. Sayers, et al. "Veillonella". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2022-09-09.
  16. "The LTP" . Retrieved 20 November 2023.
  17. "LTP_all tree in newick format" . Retrieved 20 November 2023.
  18. "LTP_08_2023 Release Notes" (PDF). Retrieved 20 November 2023.
  19. "GTDB release 07-RS207". Genome Taxonomy Database . Retrieved 20 June 2022.
  20. "bac120_r207.sp_labels". Genome Taxonomy Database . Retrieved 20 June 2022.
  21. "Taxon History". Genome Taxonomy Database . Retrieved 20 June 2022.
  22. Nukina S, Hibi A, Nishida K (October 1989). "Bacterial Meningitis Caused by Veillonella Parvula". Pediatrics International. 31 (5): 609–614. doi:10.1111/j.1442-200X.1989.tb01363.x. ISSN   1328-8067. PMID   2515742.
  23. Bhatti MA, Frank MO (2000-09-01). "Veillonella parvula Meningitis: Case Report and Review of Veillonella Infections". Clinical Infectious Diseases. 31 (3): 839–840. doi:10.1086/314046. ISSN   1537-6591. PMID   11017846.
  24. Umeda K, Kano Y (2022). "Veillonella parvula: A rare Gram-negative coccus causing vertebral osteomyelitis". IDCases. 27: e01417. doi:10.1016/j.idcr.2022.e01417. ISSN   2214-2509. PMC   8802884 . PMID   35127449.
  25. Singh N, Yu VL (1992-01-01). "Osteomyelitis Due to Veillonella parvula: Case Report and Review". Clinical Infectious Diseases. 14 (1): 361–363. doi:10.1093/clinids/14.1.361. ISSN   1058-4838. PMID   1571454.
  26. Matera G, Muto V, Vinci M, Zicca E, Abdollahi-Roodsaz S, van de Veerdonk FL, Kullberg BJ, Liberto MC, van der Meer JW, Focà A, Netea MG, Joosten LA (December 2009). "Receptor Recognition of and Immune Intracellular Pathways for Veillonella parvula Lipopolysaccharide". Clinical and Vaccine Immunology. 16 (12): 1804–1809. doi:10.1128/CVI.00310-09. ISSN   1556-6811. PMC   2786383 . PMID   19828771.
  27. Prakash PO, Rayasam K, Chaitanya KV, Peddireddy V (2023), "Biofilms: cities of microorganisms", Bacterial Survival in the Hostile Environment, Elsevier, pp. 131–148, doi:10.1016/b978-0-323-91806-0.00017-5, ISBN   978-0-323-91806-0 , retrieved 2024-04-09
  28. Libertin CR, Peterson JH, Brodersen MP, Huff T (2016). "A Case of Penicillin-Resistant Veillonella Prosthetic Joint Infection of the Knee". Case Reports in Orthopedics. 2016: 1–5. doi: 10.1155/2016/7171947 . ISSN   2090-6749. PMC   5165143 . PMID   28050296.
  29. 1 2 Saladi L, Zeana C, Singh M (2017). "Native Valve Endocarditis due to Veillonella Species: A Case Report and Review of the Literature". Case Reports in Infectious Diseases. 2017: 1–3. doi: 10.1155/2017/4896186 . ISSN   2090-6625. PMC   5446852 . PMID   28589047.
  30. Cobo F, Pérez-Carrasco V, García-Salcedo JA, Navarro-Marí JM (December 2020). "Bacteremia caused by Veillonella dispar in an oncological patient". Anaerobe. 66: 102285. doi:10.1016/j.anaerobe.2020.102285. PMC   7563575 . PMID   33075505.
  31. Rolfe RD, Finegold SM (November 1981). "Comparative In Vitro Activity of New Beta-Lactam Antibiotics Against Anaerobic Bacteria". Antimicrobial Agents and Chemotherapy. 20 (5): 600–609. doi:10.1128/AAC.20.5.600. ISSN   0066-4804. PMC   181759 . PMID   7325628.
  32. Singh N, Yu VL (1992-01-01). "Osteomyelitis Due to Veillonella parvula: Case Report and Review". Clinical Infectious Diseases. 14 (1): 361–363. doi:10.1093/clinids/14.1.361. ISSN   1058-4838. PMID   1571454.
  33. Marriott D, Stark D, Harkness J (February 2007). "Veillonella parvula Discitis and Secondary Bacteremia: a Rare Infection Complicating Endoscopy and Colonoscopy?". Journal of Clinical Microbiology. 45 (2): 672–674. doi:10.1128/JCM.01633-06. ISSN   0095-1137. PMC   1829049 . PMID   17108070.
  34. Isner-Horobeti ME, Lecocq J, Dupeyron A, De Martino SJ, Froehlig P, Vautravers P (January 2006). "Veillonella discitis. A case report". Joint Bone Spine. 73 (1): 113–115. doi:10.1016/j.jbspin.2005.02.002. PMID   16085443.

Further reading