Allylamine

Last updated
Allylamine
Allylamine.png
Allylamine-3D-balls.png
Names
Preferred IUPAC name
Prop-2-en-1-amine [1]
Other names
2-Propen-1-amine
2-Propenamine
Allyl amine
3-Amino-prop-1-ene
3-Aminopropene
3-Aminopropylene
Monoallylamine
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.003.150 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-463-9
PubChem CID
RTECS number
  • BA5425000
UNII
UN number 2334
  • InChI=1S/C3H7N/c1-2-3-4/h2H,1,3-4H2 Yes check.svgY
    Key: VVJKKWFAADXIJK-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3H7N/c1-2-3-4/h2H,1,3-4H2
    Key: VVJKKWFAADXIJK-UHFFFAOYAW
  • C=CCN
Properties
C3H7N
Molar mass 57.096 g·mol−1
AppearanceColorless liquid
Density 0.7630 g/cm3, liquid
Melting point −88 °C (−126 °F; 185 K)
Boiling point 55 to 58 °C (131 to 136 °F; 328 to 331 K)
Acidity (pKa)9.49 (conjugate acid; H2O) [2]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Lachrymatory
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H225, H301, H310, H315, H319, H330, H335, H371, H373, H411
P210, P233, P240, P241, P242, P243, P260, P261, P262, P264, P270, P271, P273, P280, P284, P301+P310, P302+P350, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P309+P311, P310, P312, P314, P320, P321, P322, P330, P332+P313, P337+P313, P361, P362, P363, P370+P378, P391, P403+P233, P403+P235, P405, P501
NFPA 704 (fire diamond)
4
3
Flash point −28 °C (−18 °F; 245 K)
374 °C (705 °F; 647 K)
Explosive limits 2-22%
Lethal dose or concentration (LD, LC):
106 mg/kg
Related compounds
Related amine
Propylamine
Related compounds
Allyl alcohol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Allylamine is an organic compound with the formula C3H5NH2. This colorless liquid is the simplest stable unsaturated amine.

Contents

Production and reactions

All three allylamines, mono-, di-, and triallylamine, are produced by the treating allyl chloride with ammonia followed by distillation. [3] Or by the reaction of allyl chloride with Hexamine. [4] Pure samples can be prepared by hydrolysis of allyl isothiocyanate. [5] It behaves as a typical amine. [6]

Polymerization can be used to prepare the homopolymer (polyallylamine) or copolymers. The polymers are promising membranes for use in reverse osmosis. [3]

Other allylamines

Diallylamine is a precursor to industrial products. Functionalized allylamines have pharmaceutical applications. Pharmaceutically important allylamines include flunarizine and naftifine. Flunarizine aids in the relief of migraines while naftifine acts to fight common fungus causing infections such as athlete's foot, jock itch, and ringworm. [7]

Flunarizine and naftifine are pharmacologically active allylamines. Allylamines.svg
Flunarizine and naftifine are pharmacologically active allylamines.

Safety

Allylamine, like other allyl derivatives is a lachrymator and skin irritant. Its oral LD50 is 106 mg/kg for rats.

Related Research Articles

<span class="mw-page-title-main">Tetrahydrofuran</span> Cyclic chemical compound, (CH₂)₄O

Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent.

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

<span class="mw-page-title-main">Allyl chloride</span> Chemical compound

Allyl chloride is the organic compound with the formula CH2=CHCH2Cl. This colorless liquid is insoluble in water but soluble in common organic solvents. It is mainly converted to epichlorohydrin, used in the production of plastics. It is a chlorinated derivative of propylene. It is an alkylating agent, which makes it both useful and hazardous to handle.

Acetamide (systematic name: ethanamide) is an organic compound with the formula CH3CONH2. It is derived from acetic acid. It finds some use as a plasticizer and as an industrial solvent. The related compound N,N-dimethylacetamide (DMA) is more widely used, but it is not prepared from acetamide. Acetamide can be considered an intermediate between acetone, which has two methyl (CH3) groups either side of the carbonyl (CO), and urea which has two amide (NH2) groups in those locations. Acetamide is also a naturally occurring mineral with the IMA symbol: Ace.

<span class="mw-page-title-main">Benzoyl chloride</span> Organochlorine compound (C7H5ClO)

Benzoyl chloride, also known as benzenecarbonyl chloride, is an organochlorine compound with the formula C7H5ClO. It is a colourless, fuming liquid with an irritating odour, and consists of a benzene ring with an acyl chloride substituent. It is mainly useful for the production of peroxides but is generally useful in other areas such as in the preparation of dyes, perfumes, pharmaceuticals, and resins.

In organic chemistry, the Mannich reaction is a three-component organic reaction that involves the amino alkylation of an acidic proton next to a carbonyl functional group by formaldehyde and a primary or secondary amine or ammonia. The final product is a β-amino-carbonyl compound also known as a Mannich base. Reactions between aldimines and α-methylene carbonyls are also considered Mannich reactions because these imines form between amines and aldehydes. The reaction is named after Carl Mannich.

<span class="mw-page-title-main">DABCO</span> Chemical compound

DABCO (1,4-diazabicyclo[2.2.2]octane), also known as triethylenediamine or TEDA, is a bicyclic organic compound with the formula N2(C2H4)3. This colorless solid is a highly nucleophilic tertiary amine base, which is used as a catalyst and reagent in polymerization and organic synthesis.

<span class="mw-page-title-main">Nitrosylsulfuric acid</span> Chemical compound

Nitrosylsulfuric acid is the chemical compound with the formula HSO4NO. It is a colourless solid that is used industrially in the production of caprolactam, and was formerly part of the lead chamber process for producing sulfuric acid. The compound is the mixed anhydride of sulfuric acid and nitrous acid.

In organic chemistry, an azo coupling is an organic reaction between a diazonium compound and another aromatic compound that produces an azo compound. In this electrophilic aromatic substitution reaction, the aryldiazonium cation is the electrophile and the activated arene is a nucleophile. In most cases, including the examples below, the diazonium compound is also aromatic.

Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998. Ethylenediamine is the first member of the so-called polyethylene amines.

<span class="mw-page-title-main">Allyl alcohol</span> Organic compound (CH2=CHCH2OH)

Allyl alcohol is an organic compound with the structural formula CH2=CHCH2OH. Like many alcohols, it is a water-soluble, colourless liquid. It is more toxic than typical small alcohols. Allyl alcohol is used as a raw material for the production of glycerol, but is also used as a precursor to many specialized compounds such as flame-resistant materials, drying oils, and plasticizers. Allyl alcohol is the smallest representative of the allylic alcohols.

<span class="mw-page-title-main">Fluorene</span> Chemical compound

Fluorene, or 9H-fluorene is an organic compound with the formula (C6H4)2CH2. It forms white crystals that exhibit a characteristic, aromatic odor similar to that of naphthalene. It has a violet fluorescence, hence its name. For commercial purposes it is obtained from coal tar. It is insoluble in water and soluble in many organic solvents. Although sometimes classified as a polycyclic aromatic hydrocarbon, the five-membered ring has no aromatic properties. Fluorene is mildly acidic.

<span class="mw-page-title-main">Epichlorohydrin</span> Chemical compound

Epichlorohydrin is an organochlorine compound and an epoxide. Despite its name, it is not a halohydrin. It is a colorless liquid with a pungent, garlic-like odor, moderately soluble in water, but miscible with most polar organic solvents. It is a chiral molecule generally existing as a racemic mixture of right-handed and left-handed enantiomers. Epichlorohydrin is a highly reactive electrophilic compound and is used in the production of glycerol, plastics, epoxy glues and resins, epoxy diluents and elastomers.

In inorganic chemistry, sulfonyl halide groups occur when a sulfonyl functional group is singly bonded to a halogen atom. They have the general formula RSO2X, where X is a halogen. The stability of sulfonyl halides decreases in the order fluorides > chlorides > bromides > iodides, all four types being well known. The sulfonyl chlorides and fluorides are of dominant importance in this series.

<span class="mw-page-title-main">Allyl bromide</span> Chemical compound

Allyl bromide (3-bromopropene) is an organic halide. It is an alkylating agent used in synthesis of polymers, pharmaceuticals, synthetic perfumes and other organic compounds. Physically, allyl bromide is a colorless liquid with an irritating and persistent smell, however, commercial samples are yellow or brown. Allyl bromide is more reactive but more expensive than allyl chloride, and these considerations guide its use.

<span class="mw-page-title-main">Hydroamination</span> Addition of an N–H group across a C=C or C≡C bond

In organic chemistry, hydroamination is the addition of an N−H bond of an amine across a carbon-carbon multiple bond of an alkene, alkyne, diene, or allene. In the ideal case, hydroamination is atom economical and green. Amines are common in fine-chemical, pharmaceutical, and agricultural industries. Hydroamination can be used intramolecularly to create heterocycles or intermolecularly with a separate amine and unsaturated compound. The development of catalysts for hydroamination remains an active area, especially for alkenes. Although practical hydroamination reactions can be effected for dienes and electrophilic alkenes, the term hydroamination often implies reactions metal-catalyzed processes.

<span class="mw-page-title-main">Thiophosphoryl chloride</span> Chemical compound

Thiophosphoryl chloride is an inorganic compound with the formula PSCl3. It is a colorless pungent smelling liquid that fumes in air. It is synthesized from phosphorus chloride and used to thiophosphorylate organic compounds, such as to produce insecticides.

<span class="mw-page-title-main">Allyl acetate</span> Chemical compound

Allyl acetate is an organic compound with formula C3H5OC(O)CH3. This colourless liquid is a precursor to especially allyl alcohol, which is a useful industrial intermediate. It is the acetate ester of allyl alcohol.

Aminoacetonitrile is the organic compound with the formula NCCH2NH2. The compound is a colorless liquid. It is unstable at room temperature, owing to the incompatibility of the amine nucleophile and the nitrile electrophile. For this reason it is usually encountered as the chloride and bisulfate salts of the ammonium derivative, i.e., [NCCH2NH3]+Cl and [NCCH2NH3]+HSO4.

<span class="mw-page-title-main">Triallylamine</span> Chemical compound

Triallylamine is the organic compound with the formula N(CH2CH=CH2)3. It is a colorless liquid with an ammonia-like odor. It is multifunctional, featuring a tertiary amine and three alkene groups. Triallylamine (and mono- and diallyl amines) is produced by the treating allyl chloride with ammonia.

References

  1. Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 681. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4.
  2. Hall, H. K. (1957). "Correlation of the Base Strengths of Amines". Journal of the American Chemical Society. 79 (20): 5441–5444. doi:10.1021/ja01577a030.
  3. 1 2 Ludger Krähling; Jürgen Krey; Gerald Jakobson; Johann Grolig; Leopold Miksche (2002). "Allyl Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_425. ISBN   3527306730.
  4. "Synthesis of allylamine in ethanol". ResearchGate. Retrieved 2020-06-30.
  5. M. T. Leffler (1938). "Allylamine". Organic Syntheses. 18: 5. doi:10.15227/orgsyn.018.0005.
  6. Henk de Koning, W. Nico Speckamp "Allylamine" in Encyclopedia of Reagents for Organic Synthesis, 2001, John Wiley & Sons, Weinheim. doi : 10.1002/047084289X.ra043 Article Online Posting Date: April 15, 2001
  7. Beck, John F.; Samblanet, Danielle C.; Schmidt, Joseph A. R. (1 January 2013). "Palladium catalyzed intermolecular hydroamination of 1-substituted allenes: an atom-economical method for the synthesis of N-allylamines". RSC Advances. 3 (43): 20708. Bibcode:2013RSCAd...320708B. doi:10.1039/c3ra43870h.