Quinazoline

Last updated
Quinazoline
Quinazoline numbering.png
C=black, H=white, N=blue Quinazoline-3D-balls.png
C=black, H=white, N=blue
C=black, H=white, N=blue Quinazoline-3D-spacefill.png
C=black, H=white, N=blue
Names
Preferred IUPAC name
Quinazoline [1]
Other names
1,3-diazanaphthalene

benzopyrimidine

phenmiazine

benzo-1,3-diazine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.005.424 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 205-965-3
PubChem CID
UNII
  • InChI=1S/C8H6N2/c1-2-4-8-7(3-1)5-9-6-10-8/h1-6H Yes check.svgY
    Key: JWVCLYRUEFBMGU-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C8H6N2/c1-2-4-8-7(3-1)5-9-6-10-8/h1-6H
    Key: JWVCLYRUEFBMGU-UHFFFAOYAV
  • c1ccc2c(c1)cncn2
Properties
C8H6N2
Molar mass 130.150 g·mol−1
Appearancelight yellow crystals
Density 1.351 g/cm3, solid
Melting point 48 °C (118 °F; 321 K)
Boiling point 243 °C (469 °F; 516 K)
Soluble
Acidity (pKa)3.51 [2]
Structure
2.2 D [3]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Irritant
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Flash point 106 °C (223 °F; 379 K)
Safety data sheet (SDS) External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Quinazoline is an organic compound with the formula C8H6N2. It is an aromatic heterocycle with a bicyclic structure consisting of two fused six-membered aromatic rings, a benzene ring and a pyrimidine ring. It is a light yellow crystalline solid that is soluble in water. Also known as 1,3-diazanaphthalene, quinazoline received its name from being an aza derivative of quinoline. Though the parent quinazoline molecule is rarely mentioned by itself in technical literature, substituted derivatives have been synthesized for medicinal purposes such as antimalarial and anticancer agents. Quinazoline is a planar molecule. It is isomeric with the other diazanaphthalenes of the benzodiazine subgroup: cinnoline, quinoxaline, and phthalazine. Over 200 biologically active quinazoline and quinoline alkaloids are identified. [4] [5]

Contents

Synthesis

Preparation of 4-chloroquinazoline and its tosylhydrazide. 4-ClQuinazoline.png
Preparation of 4-chloroquinazoline and its tosylhydrazide.

The synthesis of quinazoline was first reported in 1895 by August Bischler and Lang through the decarboxylation of the 2-carboxy derivative (quinazoline-2-carboxylic acid). [6] In 1903, Siegmund Gabriel reported the synthesis of the parent quinazoline from o-nitrobenzylamine, which was reduced with hydrogen iodide and red phosphorus to 2-aminobenzylamine. The reduced intermediate condenses with formic acid to yield dihydroquinazoline, which was oxidized to quinazoline. [7]

Methods have been reviewed. [8] An efficient route to the parent heterocycle proceeds via the 4-chloro derivative to the tosylhydrazide, which is removed by base. [9]

Reactions

Hydration and addition reactions

Hydration of quinazolinium. QuinazolineHydration.png
Hydration of quinazolinium.

Quinazoline protonates (and methylates) at N3. Protonation induces hydration. Many mildly acidic substrates add across the C=N3 bond, these include hydrogen cyanide, sodium bisulfite, and methyl ketones. [10]

Hydrolysis

In warm solution, quinazoline hydrolyzes under acidic and alkaline conditions to 2-aminobenzaldehyde (or the products of its self-condensation) and formic acid and ammonia/ammonium. [3]

Electrophilic and nucleophilic substitution

The pyrimidine ring resists electrophilic substitution, although the 4-position is more reactive than the 2-position. In comparison, the benzene ring is more susceptible to electrophilic substitution. The ring position order of reactivity is 8 > 6 > 5 > 7. 2- and 4-halo derivatives of quinazoline undergo displacement by nucleophiles, such as piperidine. [3]

Biological and pharmacological significance

Gefitinib

In May 2003, the U.S. Food and Drug Administration (FDA) approved the quinazoline gefitinib. The drug, produced by AstraZeneca, is an inhibitor of the protein kinase of epidermal growth factor receptor (EGFR). It binds to the ATP-binding site of EGFR, thus inactivating the anti-apoptotic Ras signal transduction cascade preventing further growth of cancer cells. [11] [12] [13]

Lapatinib

In March 2007, GlaxoSmithKline's drug lapatinib was approved by the U.S. FDA to treat advanced-stage or metastatic breast cancer in combination with Roche's capecitabine. Lapatinib eliminates the growth of breast cancer stem cells that cause tumor growth. The binding of lapatinib to the ATP-binding site in the EGFR and human epidermal growth factor receptor 2 (HER2) protein kinase domains inhibits signal mechanism activation (through reversible, competitive inhibition). [14] [15] [16] [17]

Erlotinib

In May 2013, erlotinib, a drug manufactured by Astellas, was approved by the U.S. FDA to treat NSCLC patients with tumors caused by mutations of EGFR. The binding of erlotinib to the ATP-binding sites of the EGFR receptors prevents EGFR from producing phosphotyrosine residues (due to competitive inhibition), thus rendering the receptor incapable of generating signal cascades to promote cell growth. [18] [19]

Afatinib

In July 2013, the U.S. FDA approved afatinib, a drug developed by Boehringer Ingelheim, as an irreversible, competitive inhibitor of HER2 and EGFR kinases. While afatinib demonstrates a similar mechanism to laptinib in which it acts as an irreversible HER2 and EGFR inhibitor, afatinib has also shown activity against tyrosine kinases that have become resistant to gefinitib and erlotinib. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Tyrosine kinase</span> Enzyme

A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to the tyrosine residues of specific proteins inside a cell. It functions as an "on" or "off" switch in many cellular functions.

Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with paracrine signaling, intracrine signaling, or classical endocrine signaling.

<span class="mw-page-title-main">Gefitinib</span> Medication used for cancer

Gefitinib, sold under the brand name Iressa, is a medication used for certain breast, lung and other cancers. Gefitinib is an EGFR inhibitor, like erlotinib, which interrupts signaling through the epidermal growth factor receptor (EGFR) in target cells. Therefore, it is only effective in cancers with mutated and overactive EGFR, but resistances to gefitinib can arise through other mutations. It is marketed by AstraZeneca and Teva.

<span class="mw-page-title-main">Epidermal growth factor receptor</span> Transmembrane protein

The epidermal growth factor receptor is a transmembrane protein that is a receptor for members of the epidermal growth factor family of extracellular protein ligands.

<span class="mw-page-title-main">Erlotinib</span> Medication for treatment of non-small-cell lung cancer

Erlotinib, sold under the brand name Tarceva among others, is a medication used to treat non-small cell lung cancer (NSCLC) and pancreatic cancer. Specifically it is used for NSCLC with mutations in the epidermal growth factor receptor (EGFR) — either an exon 19 deletion (del19) or exon 21 (L858R) substitution mutation — which has spread to other parts of the body. It is taken by mouth.

<span class="mw-page-title-main">HER2</span> Mammalian protein found in humans

Receptor tyrosine-protein kinase erbB-2 is a protein that normally resides in the membranes of cells and is encoded by the ERBB2 gene. ERBB is abbreviated from erythroblastic oncogene B, a gene originally isolated from the avian genome. The human protein is also frequently referred to as HER2 or CD340.

<span class="mw-page-title-main">Targeted therapy</span> Type of therapy

Targeted therapy or molecularly targeted therapy is one of the major modalities of medical treatment (pharmacotherapy) for cancer, others being hormonal therapy and cytotoxic chemotherapy. As a form of molecular medicine, targeted therapy blocks the growth of cancer cells by interfering with specific targeted molecules needed for carcinogenesis and tumor growth, rather than by simply interfering with all rapidly dividing cells. Because most agents for targeted therapy are biopharmaceuticals, the term biologic therapy is sometimes synonymous with targeted therapy when used in the context of cancer therapy. However, the modalities can be combined; antibody-drug conjugates combine biologic and cytotoxic mechanisms into one targeted therapy.

<span class="mw-page-title-main">Lapatinib</span> Cancer medication

Lapatinib (INN), used in the form of lapatinib ditosylate (USAN) is an orally active drug for breast cancer and other solid tumours. It is a dual tyrosine kinase inhibitor which interrupts the HER2/neu and epidermal growth factor receptor (EGFR) pathways. It is used in combination therapy for HER2-positive breast cancer. It is used for the treatment of patients with advanced or metastatic breast cancer whose tumors overexpress HER2 (ErbB2).

The ErbB family of proteins contains four receptor tyrosine kinases, structurally related to the epidermal growth factor receptor (EGFR), its first discovered member. In humans, the family includes Her1, Her2 (ErbB2), Her3 (ErbB3), and Her4 (ErbB4). The gene symbol, ErbB, is derived from the name of a viral oncogene to which these receptors are homologous: erythroblastic leukemia viral oncogene. Insufficient ErbB signaling in humans is associated with the development of neurodegenerative diseases, such as multiple sclerosis and Alzheimer's disease, while excessive ErbB signaling is associated with the development of a wide variety of types of solid tumor.

<span class="mw-page-title-main">ERBB3</span> Protein found in humans

Receptor tyrosine-protein kinase erbB-3, also known as HER3, is a membrane bound protein that in humans is encoded by the ERBB3 gene.

<span class="mw-page-title-main">Afatinib</span> Chemical compound

Afatinib, sold under the brand name Gilotrif among others, is a medication which is used to treat non-small cell lung carcinoma (NSCLC). It belongs to the tyrosine kinase inhibitor family of medications. It is taken by mouth.

<span class="mw-page-title-main">Neratinib</span> Chemical compound

Neratinib (INN), sold under the brand name Nerlynx, is a tyrosine kinase inhibitor anti-cancer medication used for the treatment of breast cancer.

Targeted therapy of lung cancer refers to using agents specifically designed to selectively target molecular pathways responsible for, or that substantially drive, the malignant phenotype of lung cancer cells, and as a consequence of this (relative) selectivity, cause fewer toxic effects on normal cells.

<span class="mw-page-title-main">Tyrosine kinase inhibitor</span> Drug typically used in cancer treatment

A tyrosine kinase inhibitor (TKI) is a pharmaceutical drug that inhibits tyrosine kinases. Tyrosine kinases are enzymes responsible for the activation of many proteins by signal transduction cascades. The proteins are activated by adding a phosphate group to the protein (phosphorylation), a step that TKIs inhibit. TKIs are typically used as anticancer drugs. For example, they have substantially improved outcomes in chronic myelogenous leukemia. They have also been used to treat other diseases, such as idiopathic pulmonary fibrosis.

<span class="mw-page-title-main">ALK inhibitor</span>

ALK inhibitors are anti-cancer drugs that act on tumours with variations of anaplastic lymphoma kinase (ALK) such as an EML4-ALK translocation. They fall under the category of tyrosine kinase inhibitors, which work by inhibiting proteins involved in the abnormal growth of tumour cells. All the current approved ALK inhibitors function by binding to the ATP pocket of the abnormal ALK protein, blocking its access to energy and deactivating it. A majority of ALK-rearranged NSCLC harbour the EML4-ALK fusion, although as of 2020, over 92 fusion partners have been discovered in ALK+ NSCLC. For each fusion partner, there can be several fusion variants depending on the position the two genes were fused at, and this may have implications on the response of the tumour and prognosis of the patient.

Angiokinase inhibitors are a new therapeutic target for the management of cancer. They inhibit tumour angiogenesis, one of the key processes leading to invasion and metastasis of solid tumours, by targeting receptor tyrosine kinases. Examples include nintedanib, afatinib and motesanib.

Growth factor receptor inhibitors are drugs that target the growth factor receptors of cells. They interfere with binding of the growth factor to the corresponding growth factor receptors, impeding cell growth and are used medically to treat cancer.

<span class="mw-page-title-main">Osimertinib</span> Chemical compound, used as a medication to treat lung cancer

Osimertinib, sold under the brand name Tagrisso, is a medication used to treat non-small-cell lung carcinomas with specific mutations. It is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor.

<span class="mw-page-title-main">Tesevatinib</span> Chemical compound

Tesevatinib is an experimental drug proposed for use in kidney cancer and polycystic kidney disease. The drug was first developed by Exelixis, Inc. and was later acquired by Kadmon Corporation. Tesevatinib binds to and inhibits several tyrosine receptor kinases that play major roles in tumor cell proliferation and tumor vascularization, including epidermal growth factor receptor, epidermal growth factor receptor 2, vascular endothelial growth factor receptor (VEGFR), and ephrin B4 (EphB4).

VEGFR-2 inhibitor, also known as kinase insert domain receptor(KDR) inhibitor, are tyrosine kinase receptor inhibitors that reduce angiogenesis or lymphangiogenesis, leading to anticancer activity. Generally they are small, synthesised molecules that bind competitively to the ATP-site of the tyrosine kinase domain. VEGFR-2 selective inhibitor can interrupt multiple signaling pathways involved in tumor, including proliferation, metastasis and angiogenesis.

References

  1. International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 212. doi:10.1039/9781849733069. ISBN   978-0-85404-182-4.
  2. Armarego, W. L. F. (1963). "Quinazolines". Advances in Heterocyclic Chemistry Volume 1. Vol. 1. pp. 253–309. doi:10.1016/S0065-2725(08)60527-9. ISBN   9780120206018. PMID   14087221.
  3. 1 2 3 Büchel, K. H., ed. Methods of Organic Chemistry (Houben-Weyl): Additional and Supplementary Volumes to the 4th Edition. New York: Georg Thieme Verlag Stuttgart, 2001.
  4. Shang, XF; Morris-Natschke, SL; Liu, YQ; Guo, X; Xu, XS; Goto, M; Li, JC; Yang, GZ; Lee, KH (May 2018). "Biologically active quinoline and quinazoline alkaloids part I." Medicinal Research Reviews. 38 (3): 775–828. doi:10.1002/med.21466. PMC   6421866 . PMID   28902434.
  5. Shang, Xiao-Fei; Morris-Natschke, Susan L.; Yang, Guan-Zhou; Liu, Ying-Qian; Guo, Xiao; Xu, Xiao-Shan; Goto, Masuo; Li, Jun-Cai; Zhang, Ji-Yu; Lee, Kuo-Hsiung (September 2018). "Biologically active quinoline and quinazoline alkaloids part II". Medicinal Research Reviews. 38 (5): 1614–1660. doi:10.1002/med.21492. ISSN   0198-6325. PMC   6105521 . PMID   29485730.
  6. Asif, Mohammad (2014). "Chemical Characteristics, Synthetic Methods, and Biological Potential of Quinazoline and Quinazolinone Derivatives". International Journal of Medicinal Chemistry: 1–27. doi: 10.1155/2014/395637 . PMID   25692041.
  7. Morgan, G.T., ed. Abstract of Papers. Journal of the Chemical Society. London: Gurney & Jackson, 1904. Print.
  8. Connolly, David J.; Cusack, Declan; O'Sullivan, Timothy P.; Guiry, Patrick J. (2005). "Synthesis of quinazolinones and quinazolines". Tetrahedron. 61 (43): 10153–10202. doi:10.1016/j.tet.2005.07.010.
  9. W. L. F. Armarego (1967). "Halogenoquinazolines". In W. L. F. Armarego (ed.). Chemistry of Heterocyclic Compounds. pp. 11–38. doi:10.1002/9780470186916.ch7. ISBN   9780470186916.
  10. W. L. F. Armarego (1967). "Quinazoline". In W. L. F. Armarego (ed.). Chemistry of Heterocyclic Compounds. Chemistry of Heterocyclic Compounds: A Series of Monographs. Vol. 24. pp. 11–38. doi:10.1002/9780470186916.ch2. ISBN   9780470186916.
  11. "Iressa(Gefitinib)" (PDF). US Food and Drug Administration. 2 May 2003.
  12. Lynch, Thomas J.; Bell, Daphne W.; Sordella, Raffaella; Gurubhagavatula, Sarada; Okimoto, Ross A.; Brannigan, Brian W.; Harris, Patricia L.; Haserlat, Sara M.; Supko, Jeffrey G.; Haluska, Frank G.; Louis, David N.; Christiani, David C.; Settleman, Jeff; Haber, Daniel A (May 20, 2004). "Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer to Gefitinib" (PDF). NEJM. 350 (21): 2129–39. doi:10.1056/nejmoa040938. PMID   15118073.
  13. Takimoto CH, Calvo E. "Principles of Oncologic Pharmacotherapy" in Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ (Eds) Cancer Management: A Multidisciplinary Approach. 11 ed. 2008.
  14. "Lapatinib". US Food and Drug Administration. 13 March 2007.
  15. Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH, Ellis B, Pennisi C, et al. (2004). "A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells". Cancer Research. 64 (18): 6652–9. doi: 10.1158/0008-5472.CAN-04-1168 . PMID   15374980.
  16. Rodriguez, A. (April 2008). New type of drug shrinks primary breast cancer tumors significantly in just six weeks; research provides leads to a new target in cancer treatment – the cancer stem cell. Archived from the original on 2008-11-26.
  17. Nelson MH, Dolder CR (February 2006). "Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors". Ann Pharmacother. 40 (2): 261–9. doi:10.1345/aph.1G387. PMID   16418322. S2CID   21622641.
  18. "Erlotinib". US Food and Drug Administration. 14 May 2013.
  19. Raymond E, Faivre S, Armand J (2000). "Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy". Drugs. 60 Suppl 1: 15–23, discussion 41–2. doi: 10.2165/00003495-200060001-00002 . PMID   11129168. S2CID   10555942.
  20. "Afatinib". US Food and Drug Administration. 12 July 2013.