Borirene

Last updated
Borirene
1H-Borirene.png
Names
Other names
1H-Boriren-1-yl
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C2H3B/c1-2-3-1/h1-3H
    Key: UVBXRPNQDJLHAH-UHFFFAOYSA-N
  • 1H-Boriren-1-yl:InChI=1S/C2H2B/c1-2-3-1/h1-2H
    Key: OIJTZPGWOYZZSN-UHFFFAOYSA-N
  • B1C=C1
  • 1H-Boriren-1-yl:[B]1C=C1
Properties
C2H3B
Molar mass 37.86 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Borirenes are a unique class of three-membered heterocyclic compounds characterized by an unsaturated boron atom within their ring structure. First computationally predicted by John Pople and Paul von Rague Schleyer in 1981, [1] the simplest borirene, (CH)2BH, is isoelectronic with the cyclopropenium cation and exhibits Hückel aromaticity. [2] Borirenes undergo ring-opening reactions with polar reagents [3] [4] [5] and form Lewis adducts, [6] [7] [8] due to the significant ring strain in its three-membered structure and the presence of an empty p orbital on the boron atom. The balance of these two properties leads to unique properties as a ligand for transition metals, in addition to observation of photochemical rearrangement and ring expansion. While borirenes were first discovered in the 1980s, new derivatives such as benzoborirenes have led to renewed interest in the field, with their potential applications yet to be fully explored.

Contents

Figure 1. The first reported X-ray crystal structure of trimesitylboracyclopropene, an example of a class of compounds known as borirenes. Trimesitylboracyclopropene.png
Figure 1. The first reported X-ray crystal structure of trimesitylboracyclopropene, an example of a class of compounds known as borirenes.


Electronic Structure

Both the σ- and π- framework of borirenes contribute significantly to its diverse reactivity. It is best shown by comparing borirenes to the isoelectronic cyclopropenyl cation: [9]

Figure 2. Representation of molecular orbitals and their relative energies of the s-, p- framework in cyclopropenyl cation. Only the four most relevant MOs of the s-framework are shown above. Mos-of-cyclopropyl-cation.png
Figure 2. Representation of molecular orbitals and their relative energies of the σ-, π- framework in cyclopropenyl cation. Only the four most relevant MOs of the σ-framework are shown above.

Although 2π Hückel aromaticity stabilizes the π-framework, three-membered ring systems like cyclopropane experience significant ring strain with bond angles of approximately 60°, deviating significantly from the 120° angles typical of sp2-hybridized carbons. This strain limits 2s-2p orbital mixing, and the σ-framework have significant π-character in terms of reactivity. [10] This leads to the energies of both frameworks being relatively close in energy, leading to interesting interactions overall. From the isolobal principle, we can expect the bonding properties to be similar in borirenes:  

Figure 3. Computed molecular orbital energies of borirene (C2H3B). The molecular orbitals are ordered from lowest energy (left) to highest energy (right). Computed with B3YLP-D3BJ/def2-TZVP level of theory in Orca 6.0.1. Computed-MO-energies-for-borirene.png
Figure 3. Computed molecular orbital energies of borirene (C2H3B). The molecular orbitals are ordered from lowest energy (left) to highest energy (right). Computed with B3YLP-D3BJ/def2-TZVP level of theory in Orca 6.0.1.

Seven molecular orbitals are depicted in Figure 3. For the simplest borirene, C2H3B, the two highest occupied molecular orbitals (HOMOs) are from the σ-framework, while the two lowest unoccupied molecular orbitals (LUMO) are from the π-framework. Substituting one carbon atom with boron, due to its lower electronegativity, disrupts degeneracy. With σ- and π- orbitals close in energy, the HOMO−1 and HOMO (from the σ-framework) can act as a π-donor and σ-donor, respectively, while the LUMO and LUMO+1 serve as both σ-acceptors and π-acceptors. A detailed computational study on borirenes by Paul von Ragué Schleyer and coworkers have predicted these molecules to undergo facile dimerization into 1,4-diboracyclohexadiene. [11]

The orbital energetics are highly tunable via substituent effects: electron-withdrawing groups lower the HOMO energy, whereas electron-donating groups raise the LUMO energy, as shown in Figure 4. [9] Characterized borirenes to date are stabilized predominantly by electron-rich, strong σ- and π-donor substituents that raise the LUMO and lowers the HOMO energy. Due to their inherent reactivity, sterically demanding groups such as m-terphenyl or mesityl substituents are commonly employed to enhance kinetic stability.

Figure 4. Relative effects of electron-withdrawing groups (EWG) and electron-donating groups (EDG) to a simple alkene. Both EWG and EDG have very similar effects to the s-framework and p-framework in borirenes. Basic-mo-theory.png
Figure 4. Relative effects of electron-withdrawing groups (EWG) and electron-donating groups (EDG) to a simple alkene. Both EWG and EDG have very similar effects to the σ-framework and π-framework in borirenes.

Synthesis

The simplest borirene, (CH)2BH, which was prepared via a reaction between an atomic boron atom and ethylene, was first identified using matrix isolation spectroscopy by Lanzisera et al. in 1997, and later confirmed with the crossed molecular beam method by Balucani et al. [12] [13] Substituted borirenes are typically prepared starting from an alkyne, and are prepared through either a rearrangement or a borylene pathway as shown in Scheme 1:

Scheme 1. Currently reported methods in the literature to prepare borylenes. The borylene pathway is accessible by either generating a in situ borylene intermediate or transferring a terminal borylene ligand from an electron-rich metal complex. The rearrangement pathway is accessible by photoinduced rearrangement of an alkynyl-borane or formation of an alkynyl-diborane intermediate. The proposed mechanism shown below are examples of potential mechanisms for the reaction, with the possibility of alternative mechanisms. (Ph = phenyl, tBu = tert-butyl, Dipp = 1,3-diisopropylphenyl, Mes = 1,3,5-trimethylphenyl) Synthetic-methods-borirene.png
Scheme 1. Currently reported methods in the literature to prepare borylenes. The borylene pathway is accessible by either generating a in situ borylene intermediate or transferring a terminal borylene ligand from an electron-rich metal complex. The rearrangement pathway is accessible by photoinduced rearrangement of an alkynyl-borane or formation of an alkynyl-diborane intermediate. The proposed mechanism shown below are examples of potential mechanisms for the reaction, with the possibility of alternative mechanisms. (Ph = phenyl, tBu = tert-butyl, Dipp = 1,3-diisopropylphenyl, Mes = 1,3,5-trimethylphenyl)

Borylene addition is a widely utilized method for the synthesis of simple borirenes. The first identification of a substituted borirene was reported by Van Der Kerk et al., achieved through GC-MS analysis of a one-pot reaction involving MeBBr2, KC8, and di-tert-butylacetylene under reflux conditions. [14] The proposed mechanism suggests the formation of a highly reactive methylborylene intermediate, formed via the elimination of two equivalents of potassium bromide. This intermediate subsequently undergoes a [2+1] cycloaddition with the alkyne precursor, leading to the formation of the borirene framework. Similarly, a photochemical approach utilizing tris(triphenylsilyl)borane as a precursor has been reported, wherein a highly reactive silylborylene intermediate reacts with bis(trimethylsilyl)acetylene to form analogous products. [15] This synthetic pathway is limited by the stability of the starting materials when exposed to strong reducing agents, the inherent instability of the borylene intermediate, and low yields.

An alternative and milder route to prepare borirenes involve the use of terminal borylene complexes, which are able to efficiently transfer the borylene moiety to alkynes under photolytic conditions. Electron-rich complexes such as [(OC)5Cr=BX] have emerged as key reagents in this context and have been extensively studied by Braunschweig and co-workers. [6] [16] [17] [18] [19] [20] [21] [22]

Borirenes can also be synthesized by rearranging internal alkynes bonded directly to boron substituents. For instance, alkyl-substituted diboranes react with trimethylstannylalkynes to form alkynyl-diborane intermediates, which quickly rearrange into borirene products. Alternatively, photoinduced rearrangement of alkynyl-boranes provides another efficient pathway for borirene synthesis. [5] [23]

Reactivity

Scheme 2. General reactivity of borirenes currently described in the literature. (Mes = 1,3,5-trimethylphenyl) New-scheme-borirene-reactivity-properties.png
Scheme 2. General reactivity of borirenes currently described in the literature. (Mes = 1,3,5-trimethylphenyl)

Similar to other tricoordinate boron compounds, borirenes readily form Lewis adducts. [6] [7] [8] Strong Lewis bases like N-heterocyclic carbenes (NHCs) bind efficiently to borirenes but can be displaced by introducing stronger Lewis acids, such as tris(pentafluorophenyl)borane. [6] Pyridine has also been shown to bind reversibly to borirenes, illustrating the milder Lewis acidity of borirenes due to the aromatic π-framework. [6] In cases where the boron atom is directly bonded to a metal fragment capable of functioning as a leaving group—such as FeCp*(CO)2—two equivalents of NHCs can displace the metal fragment, resulting in a formally positively charged tetracoordinate boron center, with [FeCp*(CO)2] acting as the counteranion. [7]


Similar to other highly strained cyclic molecules like cyclopropanes, the significant π-character of the σ−framework enables borirenes to undergo ring-opening reactions. [3] [4] [5] Polar reagents, such as hydrogen chloride (HCl) and alcohols (HOR), readily cleave the B–C bond, with the more electropositive component bonding to carbon. With the frontier orbitals of borirenes being characterized by a HOMO dominated by the σ-framework and a LUMO dominated by the π-framework, this facilitates not only ring-opening reactions and Lewis adduct formation but also other transformations, such as photoinduced rearrangements and coordination as ligands to transition metals. As shown in Scheme 2, when an electron-rich metal fragment is bonded to one of the carbon atoms of the borirene, photoinduced rearrangement can occur to yield alkynyl-boranes. [4] [22] Despite their inherent reactivity, substituted borirenes exhibit remarkable thermal stability, tolerating temperatures up to 200 °C. However, they slowly decompose in oxygen, regenerating the original alkyne starting material and yielding trace amounts of a five-membered ring-expansion product, dioxaborole, as detected by GC-MS. [5]

Potential Ligand Properties

Scheme 3. Preparation of the platinum complex with supported B-C s coordination. (Mes = 1,3,5-trimethylphenyl, Ph = phenyl) Beautiful-platinum-b-c-coordination-scheme-so-luxury.png
Scheme 3. Preparation of the platinum complex with supported B-C σ coordination. (Mes = 1,3,5-trimethylphenyl, Ph = phenyl)

Borirenes exhibit promising potential as ligands. For example, introducing an electron-rich metal complex, such as tetrakis(triethylphosphine)platinum(0), to a borylene complex induces B–C σ-bond coordination instead of cleavage. [24] This is shown in Scheme 3. The platinum fragment benefits from strong σ- and π-donation from the σ-framework and moderate π-acceptance from the π-framework. Notably, no dπ−σ*B-C interaction is observed, indicating that B−C bond activation is unfavorable.

Scheme 4. Borylene transfer to diphenylacetylene using a chromium carbonyl complex with a terminal borylene ligand. Free borirene and e3-bound borirene was reported to form in a 4:1 ratio. The authors also noted that the e -bound borirene could not be made with addition of [Cr(CO)3(CNEt)3]. The X-ray crystal structure of the e -bound borirene was also reported. Final-scheme-trihapto.png
Scheme 4. Borylene transfer to diphenylacetylene using a chromium carbonyl complex with a terminal borylene ligand. Free borirene and η3-bound borirene was reported to form in a 4:1 ratio. The authors also noted that the η -bound borirene could not be made with addition of [Cr(CO)3(CNEt)3]. The X-ray crystal structure of the η -bound borirene was also reported.

Braunschweig and coworkers further demonstrated the potential of borirenes as ligands. Reacting diphenylacetylene with a terminal borylene complex, as shown in Scheme 4, produced both a free borirene and an η3-bound chromium-borirene complex in a 4:1 ratio. [17] The authors proposed that the η3-bound chromium-borirene complex acts as an intermediate in the borylene-transfer process.

Computational investigations further highlight the distinct electronic properties of borirene ligands. Comparing the model complex (1,3,5-triisopropylbenzene)Cr(CO)3 with the minor product, energy decomposition analysis (EDA) revealed a ~1.6-fold increase in key parameters—attractive electrostatic interactions, orbital interactions, and repulsive Pauli interactions— indicating that borirene is a stronger ligand than CO.

Benzoborirenes

Scheme 5. Synthesis and reactivity of characterized benzoborirene compounds. (NHC = N-heterocyclic compound, Mes* = 1,3,5-tri-tert-butylphenyl, Ar = aromatic ring) Better-visuals-of-benzoborirene-synthesis.png
Scheme 5. Synthesis and reactivity of characterized benzoborirene compounds. (NHC = N-heterocyclic compound, Mes* = 1,3,5-tri-tert-butylphenyl, Ar = aromatic ring)

Benzoborirenes represent a novel and highly reactive class of borirene derivatives, where the borirene ring is fused to a benzene ring via a shared C=C bond. [2] DFT calculations suggest that the local aromaticity of the borirene unit in benzoborirene is comparable to that of the parent borirene. However, this fusion introduces significant ring strain due to structural deformation of the benzene ring in an anti-Mills-Nixon fashion, resulting in shorter C=C bonds in the fused atoms. This strain also enhances the inherent Lewis acidity of the boron center. [2] [25]

The fleeting benzoborirene was first detected experimentally as an intermediate by Bettinger and coworkers in 2002. [26] In 2018, the Bettinger group characterized the first stable benzoborirene compound using NMR spectroscopy, identifying an NHC-stabilized benzoborirene that rapidly dimerizes to form an NHC-stabilized 9,10-diboraanthracene. Notably, dimerization can be avoided by stabilizing the boron center with bulky, electron-rich groups. [27]

In 2020, the Ye group advanced the field by synthesizing a benzoborirene stabilized with bis(trimethylsilyl)amine (HMDS) using Cp2ZrPh2 and HMDSBBr2 as key reagents. Their foundings revealed that benzoborirenes exhibit distinct reactivity compared to borirenes. Strong donors, such as isonitriles and N-heterocyclic carbenes, induced ring-expansion and ring-opening reactions, respectively, diverging from the typical Lewis adduct formation observed for borirenes. [28] [29]

In 2022, the Bettinger group synthesized a m-terphenyl-stabilized benzoborirene and conducted detailed reactivity studies. Consistent with their heightened reactivity, benzoborirenes were found to form Lewis adducts only with weak ligands such as pyridine. Methanol, as observed with borirenes, induced ring-opening reactions. More complex transformations were observed with phosphine oxides, aldehydes, and isonitriles, which triggered ring-expansion reactions, leading to the formation of five-membered boron heterocyclic species. [30] Two years later in 2024, the Bettinger group expanded on the reactivity of benzoborienes by showing its potential to undergo formal (2+2) ring expansions, as shown in Scheme 6. [31] This contrasts the reactivity shown by cyclopropa[b]naphthalene, which can be considered an all-carbon analogue of the benzoborirene, which are known to undergo formal [4+2] and [4+2] cycloaddition reactions with highly reactive dienophiles, such as 4,-phenyl-1,2,4-triazoline-3,5-dione (PTAD) and 3,6-di-(4-pyridyl)-1,2,4,5-tetrazine (4,4’-bptz). [32] [33]

Scheme 6. Formal (2+2) ring expansions with strong nitrogen-based dienophiles and benzoborirenes, conducted by Bettinger and coworkers. (Tripp = 1,3,5-triisopropylphenyl) Ringexpansion-benzoborirene.png
Scheme 6. Formal (2+2) ring expansions with strong nitrogen-based dienophiles and benzoborirenes, conducted by Bettinger and coworkers. (Tripp = 1,3,5-triisopropylphenyl)

Related Research Articles

<span class="mw-page-title-main">Boroxine</span> 6-sided cyclic compound of oxygen and boron

Boroxine is a 6-membered heterocyclic compound composed of alternating oxygen and singly-hydrogenated boron atoms. Boroxine derivatives such as trimethylboroxine and triphenylboroxine also make up a broader class of compounds called boroxines. These compounds are solids that are usually in equilibrium with their respective boronic acids at room temperature. Beside being used in theoretical studies, boroxine is primarily used in the production of optics.

Boroles represent a class of molecules known as metalloles, which are heterocyclic 5-membered rings. As such, they can be viewed as structural analogs of cyclopentadiene, pyrrole or furan, with boron replacing a carbon, nitrogen and oxygen atom respectively. They are isoelectronic with the cyclopentadienyl cation C5H+5 or abbreviated as Cp+ and comprise four π electrons. Although Hückel's rule cannot be strictly applied to borole, it is considered to be antiaromatic due to having 4 π electrons. As a result, boroles exhibit unique electronic properties not found in other metalloles.

<span class="mw-page-title-main">Boranylium ions</span>

In chemistry, a boranylium ion is an inorganic cation with the chemical formula BR+
2
, where R represents a non-specific substituent. Being electron-deficient, boranylium ions form adducts with Lewis bases. Boranylium ions have historical names that depend on the number of coordinated ligands:

Diborane(2), also known as diborene, is an inorganic compound with the formula B2H2. The number 2 in diborane(2) indicates the number of hydrogen atoms bonded to the boron complex. There are other forms of diborane with different numbers of hydrogen atoms, including diborane(4) and diborane(6).

<span class="mw-page-title-main">Cyclic alkyl amino carbenes</span>

Cyclic(alkyl)(amino) carbenes (CAACs) are a class of stable singlet carbene ligands that feature one amino and one sp3 alkyl group adjacent to the carbene carbon atom. CAACs are a subset of N-heterocyclic carbenes (NHCs) in which the replacement of an amino group on the ‘classical’ diaminocarbene with a saturated carbon atom results in a carbene ligand that is both a better σ-donor and π-acceptor than classical NHCs. The lone pair on the nitrogen atoms in classical NHCs allows for π-donation from both nitrogen atoms, while substitution of one nitrogen with a carbon atom results in weaker π-donation from only one nitrogen substituent, thus making CAACs stronger π-acceptors and more electrophilic than classical NHCs. Like NHCs, CAACs have tunable steric and electronic properties that make them versatile ligands in both transition metal and main group. CAACs have been heavily studied. CAACs form stable adducts with otherwise reactive or unstable molecules. In materials science, CAACs stabilize species that have promising photophysical properties for organic light emitting diodes (OLEDs) and have been shown to stabilize single molecule magnets (SMMs).

<span class="mw-page-title-main">Borylene</span>

A borylene is the boron analogue of a carbene. The general structure is R-B: with R an organic moiety and B a boron atom with two unshared electrons. Borylenes are of academic interest in organoboron chemistry. A singlet ground state is predominant with boron having two vacant sp2 orbitals and one doubly occupied one. With just one additional substituent the boron is more electron deficient than the carbon atom in a carbene. For this reason stable borylenes are more uncommon than stable carbenes. Some borylenes such as boron monofluoride (BF) and boron monohydride (BH) the parent compound also known simply as borylene, have been detected in microwave spectroscopy and may exist in stars. Other borylenes exist as reactive intermediates and can only be inferred by chemical trapping.

<span class="mw-page-title-main">Holger Braunschweig</span> German chemist (born 1961)

Holger Braunschweig is Head and Chair of Inorganic Chemistry at the Julius-Maximilians-University of Würzburg in Würzburg, Germany. He is best known for founding the field of transition metal-boron multiple bonding, the synthesis of the first stable compounds containing boron-boron and boron-oxygen triple bonds, the isolation of the first non-carbon/nitrogen main-group dicarbonyl, and the first fixation of dinitrogen at an element of the p-block of the periodic table. By modifying a strategy pioneered by Prof. Gregory Robinson of the University of Georgia, Braunschweig also discovered the first rational and high-yield synthesis of neutral compounds containing boron-boron double bonds (diborenes). In 2016 Braunschweig isolated the first compounds of beryllium in the oxidation state of zero.

<span class="mw-page-title-main">Phosphenium</span> Divalent cations of phosphorus

Phosphenium ions, not to be confused with phosphonium or phosphirenium, are divalent cations of phosphorus of the form [PR2]+. Phosphenium ions have long been proposed as reaction intermediates.

<span class="mw-page-title-main">Triboracyclopropenyl</span>

The triboracyclopropenyl fragment is a cyclic structural motif in boron chemistry, named for its geometric similarity to cyclopropene. In contrast to nonplanar borane clusters that exhibit higher coordination numbers at boron (e.g., through 3-center 2-electron bonds to bridging hydrides or cations), triboracyclopropenyl-type structures are rings of three boron atoms where substituents at each boron are also coplanar to the ring. Triboracyclopropenyl-containing compounds are extreme cases of inorganic aromaticity. They are the lightest and smallest cyclic structures known to display the bonding and magnetic properties that originate from fully delocalized electrons in orbitals of σ and π symmetry. Although three-membered rings of boron are frequently so highly strained as to be experimentally inaccessible, academic interest in their distinctive aromaticity and possible role as intermediates of borane pyrolysis motivated extensive computational studies by theoretical chemists. Beginning in the late 1980s with mass spectrometry work by Anderson et al. on all-boron clusters, experimental studies of triboracyclopropenyls were for decades exclusively limited to gas-phase investigations of the simplest rings (ions of B3). However, more recent work has stabilized the triboracyclopropenyl moiety via coordination to donor ligands or transition metals, dramatically expanding the scope of its chemistry.

Intrinsic bond orbitals (IBO) are localized molecular orbitals giving exact and non-empirical representations of wave functions. They are obtained by unitary transformation and form an orthogonal set of orbitals localized on a minimal number of atoms. IBOs present an intuitive and unbiased interpretation of chemical bonding with naturally arising Lewis structures. For this reason IBOs have been successfully employed for the elucidation of molecular structures and electron flow along the intrinsic reaction coordinate (IRC). IBOs have also found application as Wannier functions in the study of solids.

<i>N</i>-Heterocyclic carbene boryl anion Isoelectronic structure

An N-heterocyclic carbene boryl anion is an isoelectronic structure of an N-heterocyclic carbene (NHC), where the carbene carbon is replaced with a boron atom that has a -1 charge. NHC boryl anions have a planar geometry, and the boron atom is considered to be sp2-hybridized. They serve as extremely strong bases, as they are very nucleophilic. They also have a very strong trans influence, due to the σ-donation coming from the boron atom. NHC boryl anions have stronger electron-releasing character when compared to normal NHCs. These characteristics make NHC boryl anions key ligands in many applications, such as polycyclic aromatic hydrocarbons, and more commonly low oxidation state main group element bonding.

<span class="mw-page-title-main">Borepin</span> Aromatic, boron-containing rings

Borepins are a class of boron-containing heterocycles used in main group chemistry. They consist of a seven-membered unsaturated ring with a tricoordinate boron in it. Simple borepins are analogues of cycloheptatriene, which is a seven-membered ring containing three carbon-carbon double bonds, each of which contributes 2π electrons for a total of 6π electrons. Unlike other seven-membered systems such as silepins and phosphepins, boron has a vacant p-orbital that can interact with the π and π* orbitals of the cycloheptatriene. This leads to an isoelectronic state akin to that of the tropylium cation, aromatizing the borepin while also allowing it to act as a Lewis acid. The aromaticity of borepin is relatively weak compared to traditional aromatics such as benzene or even cycloheptatriene, which has led to the synthesis of many fused, π-conjugated borepin systems over the years. Simple and complex borepins have been extensively studied more recently due to their high fluorescence and potential applications in technologies like organic light-emitting diodes (OLEDs) and photovoltaic cells.

<span class="mw-page-title-main">Boraacenes</span> Boron containing acene compounds

Boraacenes are polycyclic aromatic hydrocarbons containing at least one boron atom. Structurally, they are related to acenes, linearly fused benzene rings. However, the boron atom is electron deficient and may act as a Lewis Acid when compared to carbon. This results in slightly less negative charge within the ring, smaller HOMO-LUMO gaps, as well as differences in redox chemistry when compared to their acene analogues. When incorporated into acenes, Boron maintains the planarity and aromaticity of carbon acenes, while adding an empty p-orbital, which can be utilized for the fine tuning of organic semiconductor band gaps. Due to this empty p orbital, however, it is also highly reactive when exposed to nucleophiles like water or normal atmosphere, as it will readily be attacked by oxygen, which must be addressed to maintain its stability.

<span class="mw-page-title-main">Tetrahalodiboranes</span> Class of diboron compounds

Tetrahalodiboranes are a class of diboron compounds with the formula B2X4. These compounds were first discovered in the 1920s, but, after some interest in the middle of the 20th century, were largely ignored in research. Compared to other diboron compounds, tetrahalodiboranes are fairly unstable and historically have been difficult to prepare; thus, their use in synthetic chemistry is largely unexplored, and research on tetrahalodiboranes has stemmed from fundamental interest in their reactivity. Recently, there has been a resurgence in interest in tetrahalodiboranes, particularly in diboron tetrafluoride as a reagent to promote doping of silicon with B+ for use in semiconductor devices.

Main-group element-mediated activation of dinitrogen is the N2 activation facilitated by reactive main group element centered molecules (e.g., low valent main group metal calcium, dicoordinate borylene, boron radical, carbene, etc.).

<span class="mw-page-title-main">Aluminylene</span>

Aluminylenes are a sub-class of aluminium(I) compounds that feature singly-coordinated aluminium atoms with a lone pair of electrons. As aluminylenes exhibit two unoccupied orbitals, they are not strictly aluminium analogues of carbenes until stabilized by a Lewis base to form aluminium(I) nucleophiles. The lone pair and two empty orbitals on the aluminium allow for ambiphilic bonding where the aluminylene can act as both an electrophile and a nucleophile. Aluminylenes have also been reported under the names alumylenes and alanediyl.

The stabilization of bismuth's +3 oxidation state due to the inert pair effect yields a plethora of organometallic bismuth-transition metal compounds and clusters with interesting electronics and 3D structures.

<span class="mw-page-title-main">Boryl radicals</span> The structure, history, chemistry and potential applications of radicals centered on boron atoms

Boryl radicals are defined as chemical species with an unpaired electron localized on the boron atom in a molecule. There is renewed interest in their discovery as they have recently showcased useful organic reactivities. While the first studies of boryl radicals involved borane radical anions, the study of overall neutral boryl radical species was unlocked through the investigation of what are referred to as ligated boryl radicals. A boryl radical in its isolated form has a three-center-five-electron (3c-5e) configuration, while the ligation results in its transformation to a four-center-seven-electron complex (4c-7e). These descriptions found in the literature refer to the number of coordinated atoms that surround the boron atom plus the boron atom, and the number of electrons involved in the immediate bonding environment. For example, in the case of the 3c-5e boryl radical, the boron is covalently bonded to two atoms and is predicted to have its unpaired electron in the sp2-like orbital. This leads to a highly reactive radical and an empty p orbital on the boron. In contrast, the ligated boryl radicals with a 4c-7e configuration have an additional, dative bond with a Lewis base, such that the sp2 orbital is now filled. In this configuration, the radical occupies the p orbital and has the appropriate symmetry to interact with the coordinated groups and the ligand, allowing the otherwise strongly lewis basic radical to be stabilized. These structures, and the stabilizing interactions are showcased in the figure below.

Biradicaloids or diradicaloids are molecules with two radical electrons that have significant interaction with each other. The two unpaired electrons are coupled and can either form a singlet ground state or a triplet ground state.

Diboraanthracene is a class of boron heterocyclic compounds in which two boron atoms substitute two carbon atoms in anthracene (C₁₄H₁₀), one of the typical polycyclic aromatic hydrocarbons (PAHs). The most well-studied diboraanthracene is 9,10-disubstituted-9,10-diboraanthracene (DBA) and its doubly reduced dianion (DBA²⁻). DBA can be readily derivatized and polymerized to afford novel optoelectronic materials with tunable properties. DBA is also a bidentate lewis acid that forms adducts with lewis bases and catalyzes certain Diels-Alder reactions. The dianion DBA²⁻ is formally a mixed-valence, main-group ambiphile with a B(I)/B(III) frustrated lewis pair (FLP)., but the extra electrons are effectively delocalized in the aromatic system. Therefore, DBA²⁻ exhibits both FLP- and transition metal-like reactivities, enabling the activation of a variety of small molecules through distinct pathways and mechanisms

References

  1. Krogh-Jespersen, K.; Cremer, D.; Dill, J. D.; Pople, J. A.; Schleyer, P. R. (1981-05-01). "Aromaticity in small rings containing boron and carbon, ((CH)2(BH)n, n = 1,2): comarisons with isoelectronic carbocations. The decisive roles of orbital mixing and nonbonded 1,3-interactions in the structures of four-membered rings". Journal of the American Chemical Society. 103 (10): 2589–2594. Bibcode:1981JAChS.103.2589K. doi:10.1021/ja00400a018. ISSN   0002-7863.
  2. 1 2 3 Wang, Junyi; Ye, Qing (2024-02-21). "Borirenes and Boriranes: Development and Perspectives". Chemistry – A European Journal. 30 (11): e202303695. doi: 10.1002/chem.202303695 . ISSN   0947-6539. PMID   38085103.
  3. 1 2 Braunschweig, Holger; Herbst, Thomas; Radacki, Krzysztof; Frenking, Gernot; Celik, Mehmet Ali (2009-11-09). "Chemoselective Boron–Carbon Bond Cleavage by Hydroboration of Borirenes". Chemistry – A European Journal. 15 (44): 12099–12106. doi:10.1002/chem.200901749. ISSN   0947-6539. PMID   19780118.
  4. 1 2 3 Braunschweig, Holger; Ye, Qing; Radacki, Krzystof; Kupfer, Thomas (2011). "Reactivity of a platinum-substituted borirene". Dalton Transactions. 40 (14): 3666–3670. doi:10.1039/c0dt01694b. ISSN   1477-9226. PMID   21331418.
  5. 1 2 3 4 5 Eisch, John J.; Shafii, Babak; Odom, Jerome D.; Rheingold, Arnold L. (1990-02-01). "Bora-aromatic systems. Part 10. Aromatic stabilization of the triarylborirene ring system by tricoordinate boron and facile ring-opening with tetracoordinate boron". Journal of the American Chemical Society. 112 (5): 1847–1853. Bibcode:1990JAChS.112.1847E. doi:10.1021/ja00161a031. ISSN   0002-7863.
  6. 1 2 3 4 5 Braunschweig, Holger; Damme, Alexander; Dewhurst, Rian D.; Ghosh, Sundargopal; Kramer, Thomas; Pfaffinger, Bernd; Radacki, Krzysztof; Vargas, Alfredo (2013-02-06). "Electronic and Structural Effects of Stepwise Borylation and Quaternization on Borirene Aromaticity". Journal of the American Chemical Society. 135 (5): 1903–1911. Bibcode:2013JAChS.135.1903B. doi:10.1021/ja3110126. ISSN   0002-7863. PMID   23305227.
  7. 1 2 3 Braunschweig, Holger; Dewhurst, Rian D.; Ferkinghoff, Katharina (2016). "Carbene-induced synthesis of the first borironium cations using the [(η 5 -C 5 Me 5 )Fe(CO) 2 ] − anion as an unlikely leaving group". Chemical Communications. 52 (1): 183–185. doi:10.1039/C5CC07503C. ISSN   1359-7345. PMID   26511336.
  8. 1 2 Pues, Christine; Berndt, Armin (1984-04-01). "1- tert -Butylborirenes". Angewandte Chemie International Edition in English. 23 (4): 313–314. doi:10.1002/anie.198403131. ISSN   0570-0833.
  9. 1 2 Fleming, Ian (2010-02-26). Molecular Orbitals and Organic Chemical Reactions (1 ed.). Wiley. doi:10.1002/9780470689493. ISBN   978-0-470-74658-5.
  10. Dewar, Michael J. S. (1984-02-01). "Chemical implications of .sigma. conjugation". Journal of the American Chemical Society. 106 (3): 669–682. Bibcode:1984JAChS.106..669D. doi:10.1021/ja00315a036. ISSN   0002-7863.
  11. Budzelaar, Peter H. M.; Van der Kerk, Sies M.; Krogh-Jespersen, Karsten.; Schleyer, Paul v. R. (1986-07-01). "Dimerization of borirene to 1,4-diboracyclohexadiene. Structures and stabilities of (CH)4(BH)2 molecules". Journal of the American Chemical Society. 108 (14): 3960–3967. Bibcode:1986JAChS.108.3960B. doi:10.1021/ja00274a017. ISSN   0002-7863.
  12. Lanzisera, Dominick V.; Hassanzadeh, Parviz; Hannachi, Yacine; Andrews, Lester (1997-12-17). "Identification of the Borirene Molecule, (CH) 2 BH: Matrix Isolation FTIR and DFT Calculations for Five Vibrational Modes of Six Isotopic Molecules". Journal of the American Chemical Society. 119 (50): 12402–12403. Bibcode:1997JAChS.11912402L. doi:10.1021/ja973094u. ISSN   0002-7863.
  13. Balucani, Nadia; Asvany, Oskar; Lee, Yuan T.; Kaiser, Ralf I.; Galland, Nicolas; Hannachi, Yacine (2000-11-01). "Observation of Borirene from Crossed Beam Reaction of Boron Atoms with Ethylene". Journal of the American Chemical Society. 122 (45): 11234–11235. Bibcode:2000JAChS.12211234B. doi:10.1021/ja001447a. ISSN   0002-7863.
  14. van der Kerk, Sies M.; Budzelaar, Peter H. M.; van der Kerk-van Hoof, Anca; van der Kerk, Gerrit J. M.; von Ragué Schleyer, Paul (1983-01-01). "Synthesis of Borirenes and Diboretenes — a Novel Class of 2π-Aromatic Compounds". Angewandte Chemie International Edition in English. 22 (1): 48. doi:10.1002/anie.198300481. ISSN   0570-0833.
  15. Pachaly, Bernd; West, Robert (1984-06-01). "Photochemical Generation of Triphenylsilylboranediyl (C 6 H 5 ) 3 SiB: from Organosilylboranes". Angewandte Chemie International Edition in English. 23 (6): 454–455. doi:10.1002/anie.198404541. ISSN   0570-0833.
  16. Braunschweig, Holger; Damme, Alexander; Dewhurst, Rian D.; Kelch, Hauke; Macha, Bret B.; Radacki, Krzysztof; Vargas, Alfredo; Ye, Qing (2015-02-02). "Platinum trans -Bis(borirene) Complexes Displaying Coplanarity and Communication Across a Platinum Metal Center". Chemistry – A European Journal. 21 (6): 2377–2386. doi:10.1002/chem.201405803. ISSN   0947-6539. PMID   25430871.
  17. 1 2 3 Braunschweig, Holger; Dewhurst, Rian D.; Radacki, Krzysztof; Tate, Christopher W.; Vargas, Alfredo (2014-06-10). "Trihapto Ligation of a Borirene to a Single Metal Atom: A Heterocyclic Analogue of the η 3 -Cyclopropenyl Ligand". Angewandte Chemie International Edition. 53 (24): 6263–6266. doi:10.1002/anie.201402815. ISSN   1433-7851. PMID   24802284.
  18. Braunschweig, Holger; Fernández, Israel; Frenking, Gernot; Radacki, Krzysztof; Seeler, Fabian (2007-07-02). "Synthesis and Electronic Structure of a Ferroborirene". Angewandte Chemie International Edition. 46 (27): 5215–5218. doi:10.1002/anie.200700382. ISSN   1433-7851. PMID   17538918.
  19. Braunschweig, Holger; Herbst, Thomas; Rais, Daniela; Ghosh, Sundargopal; Kupfer, Thomas; Radacki, Krzysztof; Crawford, Andrew G.; Ward, Richard M.; Marder, Todd B.; Fernández, Israel; Frenking, Gernot (2009-07-01). "Borylene-Based Direct Functionalization of Organic Substrates: Synthesis, Characterization, and Photophysical Properties of Novel π-Conjugated Borirenes". Journal of the American Chemical Society. 131 (25): 8989–8999. Bibcode:2009JAChS.131.8989B. doi:10.1021/ja902198z. ISSN   0002-7863. PMID   19480461.
  20. Braunschweig, Holger; Herbst, Thomas; Rais, Daniela; Seeler, Fabian (2005-11-18). "Synthesis of Borirenes by Photochemical Borylene Transfer from [(OC) 5 MBN(SiMe 3 ) 2 ] (M=Cr, Mo) to Alkynes". Angewandte Chemie International Edition. 44 (45): 7461–7463. doi:10.1002/anie.200502524. ISSN   1433-7851. PMID   16231387.
  21. Braunschweig, Holger; Ye, Qing; Radacki, Krzystof (2009). "Borylene-based functionalization of Pt–alkynyl complexes by photochemical borylene transfer from [(OC)5CrBN(SiMe3)2]". Chemical Communications (45): 6979–6981. doi:10.1039/b915926f. ISSN   1359-7345. PMID   19904367.
  22. 1 2 Braunschweig, Holger; Ye, Qing; Radacki, Krzysztof; Brenner, Peter; Frenking, Gernot; De, Susmita (2011-01-03). "Borylene-Based Functionalization of Iron-Alkynyl-σ-Complexes and Stepwise Reversible Metal-Boryl-to-Borirene Transformation: Synthesis, Characterization, and Density Functional Theory Studies". Inorganic Chemistry. 50 (1): 62–71. doi:10.1021/ic1010874. ISSN   0020-1669. PMID   20712372.
  23. Eisch, John J.; Shafii, Babak; Rheingold, Arnold L. (1987-04-01). "Bora-aromatic systems. 9. Di-.pi.-methane-like photorearrangement of dimesityl(mesitylethynyl)borane: synthesis, structure, and aromaticity of trimesitylborirene". Journal of the American Chemical Society. 109 (8): 2526–2528. Bibcode:1987JAChS.109.2526E. doi:10.1021/ja00242a055. ISSN   0002-7863.
  24. 1 2 Braunschweig, Holger; Brenner, Peter; Dewhurst, Rian D.; Krummenacher, Ivo; Pfaffinger, Bernd; Vargas, Alfredo (2012-05-29). "Unsupported boron–carbon σ-coordination to platinum as an isolable snapshot of σ-bond activation". Nature Communications. 3 (1): 872. Bibcode:2012NatCo...3..872B. doi:10.1038/ncomms1884. ISSN   2041-1723. PMID   22643899.
  25. Hahn, Jennifer; Keck, Constanze; Maichle-Mössmer, Cäcilia; von Grotthuss, Esther; Ruth, Paul Niklas; Paesch, Alexander; Stalke, Dietmar; Bettinger, Holger F. (2018-12-12). "Synthesis and Ring Strain of a Benzoborirene- N -Heterocyclic Carbene Adduct". Chemistry – A European Journal. 24 (70): 18634–18637. doi:10.1002/chem.201804629. ISSN   0947-6539. PMID   30444011.
  26. Kaiser, Ralf I.; Bettinger, Holger F. (2002). "Gas-Phase Detection of the Elusive Benzoborirene Molecule". Angewandte Chemie International Edition. 41 (13): 2350–2352. doi:10.1002/1521-3773(20020703)41:13<2350::AID-ANIE2350>3.0.CO;2-T. ISSN   1521-3773. PMID   12203589.
  27. Hahn, Jennifer; Keck, Constanze; Maichle-Mössmer, Cäcilia; von Grotthuss, Esther; Ruth, Paul Niklas; Paesch, Alexander; Stalke, Dietmar; Bettinger, Holger F. (2018-12-12). "Synthesis and Ring Strain of a Benzoborirene- N -Heterocyclic Carbene Adduct". Chemistry – A European Journal. 24 (70): 18634–18637. doi:10.1002/chem.201804629. ISSN   0947-6539. PMID   30444011.
  28. Zhang, Hui; Wang, Junyi; Yang, Weiguang; Xiang, Libo; Sun, Weicheng; Ming, Wenbo; Li, Yinxin; Lin, Zhenyang; Ye, Qing (2020-10-14). "Solution-Phase Synthesis of a Base-Free Benzoborirene and a Three-Dimensional Inorganic Analogue". Journal of the American Chemical Society. 142 (41): 17243–17249. Bibcode:2020JAChS.14217243Z. doi:10.1021/jacs.0c06538. ISSN   0002-7863. PMID   32941023.
  29. Liu, Xiaocui; Heinz, Myron; Wang, Junyi; Tan, Leibo; Holthausen, Max C.; Ye, Qing (2023-12-18). "A Journey from Benzoborirene to Benzoborole-Supported 1,2-Diimine and Antiaromatic Borolediide". Angewandte Chemie International Edition. 62 (51): e202312608. doi: 10.1002/anie.202312608 . ISSN   1433-7851. PMID   37758684.
  30. Sindlinger, Marvin; Ströbele, Markus; Maichle-Mössmer, Cäcilia; Bettinger, Holger F. (2022). "Kinetic stabilization allows structural analysis of a benzoborirene". Chemical Communications. 58 (17): 2818–2821. doi:10.1039/D1CC06588B. ISSN   1359-7345. PMID   35050291.
  31. Sindlinger, Marvin; Biebl, Sonja; Ströbele, Markus; Bettinger, Holger F. (2024). "Formal (2+2) ring expansion prevails over (4+2) cycloaddition of a kinetically stabilized benzoborirene with reactive cycloaddends". Chemical Communications. 60 (73): 9986–9989. doi: 10.1039/D4CC02888K . ISSN   1359-7345. PMID   39175434.
  32. Halton, B; Russell, Sgg (1990). "Studies in the Cycloproparene Series: Cycloaddition Reactions With 1,3-Diphenylisobenzofuran". Australian Journal of Chemistry. 43 (12): 2099. doi:10.1071/CH9902099. ISSN   0004-9425.
  33. Neidlein, Richard; Tadesse, Lema (1988-02-03). "Synthese von Dimethyl-4a,8a-methanophthalazin-1,4-dicarboxylat und Derivaten". Helvetica Chimica Acta. 71 (1): 249–253. doi:10.1002/hlca.19880710127. ISSN   0018-019X.