Crossed molecular beam

Last updated

Crossed molecular beam experiments are chemical experiments where two beams of atoms or molecules are collided together to study the dynamics of the chemical reaction, and can detect individual reactive collisions. [1]

Contents

Technique

In a crossed molecular beam apparatus, two collimated beams of gas-phase atoms or molecules, each dilute enough to ignore collisions within each beam, intersect in a vacuum chamber. The direction and velocity of the resulting product molecules are then measured, and are frequently coupled with mass spectrometric data. These data yield information about the partitioning of energy among translational, rotational, and vibrational modes of the product molecules. [2]

History

The crossed molecular beam technique was developed by Dudley Herschbach and Yuan T. Lee, for which they were awarded the 1986 Nobel Prize in Chemistry. [3] While the technique was demonstrated in 1953 by Taylor and Datz of Oak Ridge National Laboratory, [4] Herschbach and Lee refined the apparatus and began probing gas-phase reactions in unprecedented detail.

Early crossed beam experiments investigated alkali metals such as potassium, rubidium, and cesium. When the scattered alkali metal atoms collided with a hot metal filament, they ionized, creating a small electric current. Because this detection method is nearly perfectly efficient, the technique was quite sensitive. [2] Unfortunately, this simple detection system only detects alkali metals. New techniques for detection were needed to analyze main group elements.

Detecting scattered particles through a metal filament gave a good indication of angular distribution but has no sensitivity to kinetic energy. In order to gain insight into the kinetic energy distribution, early crossed molecular beam apparatuses used a pair of slotted disks placed between the collision center and the detector. By controlling the rotation speed of the disks, only particles with a certain known velocity could pass through and be detected. [2] With information about the velocity, angular distribution, and identity of the scattered species, useful information about the dynamics of the system can be derived.

Later improvements included the use of quadrupole mass filters to select only the products of interest, [5] as well as time-of-flight mass spectrometers to allow easy measurement of kinetic energy. These improvements also allowed the detection of a vast array of compounds, marking the advent of the "universal" crossed molecular beam apparatus.

The inclusion of supersonic nozzles to collimate the gases expanded the variety and scope of experiments, and the use of lasers to excite the beams (either before impact or at the point of reaction) further broadened the applicability of this technique. [2]

See also

Related Research Articles

Ununennium Chemical element, symbol Uue and atomic number 119

Ununennium, also known as eka-francium or element 119, is the hypothetical chemical element with symbol Uue and atomic number 119. Ununennium and Uue are the temporary systematic IUPAC name and symbol respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to be an s-block element, an alkali metal, and the first element in the eighth period. It is the lightest element that has not yet been synthesized.

X-ray photoelectron spectroscopy Spectroscopic technique

X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative spectroscopic technique based on the photoelectric effect that can identify the elements that exist within a material or are covering its surface, as well as their chemical state, and the overall electronic structure and density of the electronic states in the material. XPS is a powerful measurement technique because it not only shows what elements are present, but also what other elements they are bonded to. The technique can be used in line profiling of the elemental composition across the surface, or in depth profiling when paired with ion-beam etching. It is often applied to study chemical processes in the materials in their as-received state or after cleavage, scraping, exposure to heat, reactive gasses or solutions, ultraviolet light, or during ion implantation.

Dudley R. Herschbach American chemist

Dudley Robert Herschbach is an American chemist at Harvard University. He won the 1986 Nobel Prize in Chemistry jointly with Yuan T. Lee and John C. Polanyi "for their contributions concerning the dynamics of chemical elementary processes". Herschbach and Lee specifically worked with molecular beams, performing crossed molecular beam experiments that enabled a detailed molecular-level understanding of many elementary reaction processes. Herschbach is a member of the Board of Sponsors of the Bulletin of the Atomic Scientists.

Yuan T. Lee Taiwanese chemist and Nobel Laureate

Yuan Tseh Lee is a Taiwanese chemist and a Professor Emeritus at the University of California, Berkeley. He was the first Taiwanese Nobel Prize laureate who, along with the Hungarian-Canadian John C. Polanyi and American Dudley R. Herschbach, won the Nobel Prize in Chemistry in 1986 "for their contributions to the dynamics of chemical elementary processes".

Particle-induced X-ray emission or proton-induced X-ray emission (PIXE) is a technique used for determining the elemental composition of a material or a sample. When a material is exposed to an ion beam, atomic interactions occur that give off EM radiation of wavelengths in the x-ray part of the electromagnetic spectrum specific to an element. PIXE is a powerful yet non-destructive elemental analysis technique now used routinely by geologists, archaeologists, art conservators and others to help answer questions of provenance, dating and authenticity.

Coulomb explosion

Coulombic explosions are a mechanism for transforming energy in intense electromagnetic fields into atomic motion and are thus useful for controlled destruction of relatively robust molecules. The explosions are a prominent technique in laser-based machining, and appear naturally in certain high-energy reactions.

Collision theory

Collision theory states that when suitable particles of the reactant hit each other with correct orientation, only a certain amount of collisions result in a perceptible or notable change; these successful changes are called successful collisions. The successful collisions must have enough energy, also known as activation energy, at the moment of impact to break the pre-existing bonds and form all new bonds. This results in the products of the reaction. Increasing the concentration of the reactant brings about more collisions and hence more successful collisions. Increasing the temperature increases the average kinetic energy of the molecules in a solution, increasing the amount of collisions that have enough energy. Collision theory was proposed independently by Max Trautz in 1916 and William Lewis in 1918.

Molecularity in chemistry is the number of molecules that come together to react in an elementary (single-step) reaction and is equal to the sum of stoichiometric coefficients of reactants in the elementary reaction with effective collision and correct orientation. Depending on how many molecules come together, a reaction can be unimolecular, bimolecular or even trimolecular.

Gas phase ion chemistry is a field of science encompassed within both chemistry and physics. It is the science that studies ions and molecules in the gas phase, most often enabled by some form of mass spectrometry. By far the most important applications for this science is in studying the thermodynamics and kinetics of reactions. For example, one application is in studying the thermodynamics of the solvation of ions. Ions with small solvation spheres of 1, 2, 3... solvent molecules can be studied in the gas phase and then extrapolated to bulk solution.

Ultrafast laser spectroscopy is a spectroscopic technique that uses ultrashort pulse lasers for the study of dynamics on extremely short time scales. Different methods are used to examine the dynamics of charge carriers, atoms, and molecules. Many different procedures have been developed spanning different time scales and photon energy ranges; some common methods are listed below.

Penning ionization is a form of chemi-ionization, an ionization process involving reactions between neutral atoms or molecules. The Penning effect is put to practical use in applications such as gas-discharge neon lamps and fluorescent lamps, where the lamp is filled with a Penning mixture to improve the electrical characteristics of the lamps.

Reaction dynamics is a field within physical chemistry, studying why chemical reactions occur, how to predict their behavior, and how to control them. It is closely related to chemical kinetics, but is concerned with individual chemical events on atomic length scales and over very brief time periods. It considers state-to-state kinetics between reactant and product molecules in specific quantum states, and how energy is distributed between translational, vibrational, rotational, and electronic modes.

Low-energy ion scattering

Low-energy ion scattering spectroscopy (LEIS), sometimes referred to simply as ion scattering spectroscopy (ISS), is a surface-sensitive analytical technique used to characterize the chemical and structural makeup of materials. LEIS involves directing a stream of charged particles known as ions at a surface and making observations of the positions, velocities, and energies of the ions that have interacted with the surface. Data that is thus collected can be used to deduce information about the material such as the relative positions of atoms in a surface lattice and the elemental identity of those atoms. LEIS is closely related to both medium-energy ion scattering (MEIS) and high-energy ion scattering, differing primarily in the energy range of the ion beam used to probe the surface. While much of the information collected using LEIS can be obtained using other surface science techniques, LEIS is unique in its sensitivity to both structure and composition of surfaces. Additionally, LEIS is one of a very few surface-sensitive techniques capable of directly observing hydrogen atoms, an aspect that may make it an increasingly more important technique as the hydrogen economy is being explored.

Static secondary-ion mass spectrometry, or static SIMS is a secondary ion mass spectrometry technique for chemical analysis including elemental composition and chemical structure of the uppermost atomic or molecular layer of a solid which may be a metal, semiconductor or plastic with insignificant disturbance to its composition and structure. It is one of the two principal modes of operation of SIMS, which is the mass spectrometry of ionized particles emitted by a solid surface upon bombardment by energetic primary particles.

Rutherford backscattering spectrometry (RBS) is an analytical technique used in materials science. Sometimes referred to as high-energy ion scattering (HEIS) spectrometry, RBS is used to determine the structure and composition of materials by measuring the backscattering of a beam of high energy ions impinging on a sample.

Positronium hydride

Positronium hydride, or hydrogen positride is an exotic molecule consisting of a hydrogen atom bound to an exotic atom of positronium. Its formula is PsH. It was predicted to exist in 1951 by A Ore, and subsequently studied theoretically, but was not observed until 1990. R. Pareja, R. Gonzalez from Madrid trapped positronium in hydrogen laden magnesia crystals. The trap was prepared by Yok Chen from the Oak Ridge National Laboratory. In this experiment the positrons were thermalized so that they were not traveling at high speed, and they then reacted with H ions in the crystal. In 1992 it was created in an experiment done by David M. Schrader and F.M. Jacobsen and others at the Aarhus University in Denmark. The researchers made the positronium hydride molecules by firing intense bursts of positrons into methane, which has the highest density of hydrogen atoms. Upon slowing down, the positrons were captured by ordinary electrons to form positronium atoms which then reacted with hydrogen atoms from the methane.

Giacinto Scoles is a European and North American chemist and physicist who is best known for his pioneering development of molecular beam methods for the study of weak van der Waals forces between atoms, molecules, and surfaces. He developed the cryogenic bolometer as a universal detector of atomic and molecule beams that not only can detect a small flux of molecules, but also responds to the internal energy of the molecules. This is the basis for the optothermal spectroscopy technique which Scoles and others have used to obtain very high signal-to noise and high resolution ro-vibrational spectra.

Photofragment ion imaging or, more generally, Product Imaging is an experimental technique for making measurements of the velocity of product molecules or particles following a chemical reaction or the photodissociation of a parent molecule. The method uses a two-dimensional detector, usually a microchannel plate, to record the arrival positions of state-selected ions created by resonantly enhanced multi-photon ionization (REMPI). The first experiment using photofragment ion imaging was performed by David W Chandler and Paul L Houston in 1987 on the phototodissociation dynamics of methyl iodide (iodomethane, CH3I).

Vincenzo Aquilanti is an Italian chemist, emeritus professor at the University of Perugia.

Spectroelectrochemistry

Spectroelectrochemistry (SEC) is a set of multi-response analytical techniques in which complementary chemical information is obtained in a single experiment. Spectroelectrochemistry provides a whole vision of the phenomena that take place in the electrode process. The first spectroelectrochemical experiment was carried out by Theodore Kuwana, PhD, in 1964.

References

  1. Lee, Y. T. (1987). "Molecular Beam Studies of Elementary Chemical Processes". Science. 236 (4803): 793–8. Bibcode:1987Sci...236..793T. doi:10.1126/science.236.4803.793. PMID   17777849. S2CID   45603806.
  2. 1 2 3 4 Herschbach, D. Nobel Lecture, Dec. 8, 1986.
  3. Nobel Foundation Archived July 18, 2006, at the Wayback Machine
  4. Taylor, E. H.; Datz, S. (1955). "Study of Chemical Reaction Mechanisms with Molecular Beams. The Reaction of K with HBr*". J. Chem. Phys. 23 (9): 1711. Bibcode:1955JChPh..23.1711T. doi:10.1063/1.1742417.
  5. Miller, W. B.; Safron, S. A.; Herschbach, D. R. (1967). "Exchange reactions of alkali atoms with alkali halides: a collision complex mechanism". Discuss. Faraday Soc. 44: 108–122. doi:10.1039/DF9674400108.