Xenon arc lamp

Last updated
15 kW xenon short-arc lamp used in IMAX projectors Xenon short arc 1.jpg
15 kW xenon short-arc lamp used in IMAX projectors
High-speed, slow-motion video of a xenon flashtube recorded at a speed of 44,025 frames per second.

A xenon arc lamp is a highly specialized type of gas discharge lamp, an electric light that produces light by passing electricity through ionized xenon gas at high pressure. It produces a bright white light to simulate sunlight, with applications in movie projectors in theaters, in searchlights, and for specialized uses in industry and research. For instance, Xenon arc lamps with mercury lamps are the two most common lamps used in wide-field fluorescence microscopes.

Contents

Types

Xenon arc lamps can be roughly divided into three categories: continuous-output xenon short-arc lamps, continuous-output xenon long-arc lamps, and xenon flash lamps (which are usually considered separately).

Each consists of a fused quartz or other heat resistant glass arc tube, with a tungsten metal electrode at each end. The glass tube is first evacuated and then re-filled with xenon gas. For xenon flashtubes, a third "trigger" electrode usually surrounds the exterior of the arc tube. The lifetime of a xenon arc lamp varies according to its design and power consumption, with a major manufacturer quoting average lifetimes ranging from 500 hours (7kW) to 1,500 (1kW). [1]

History

An early short arc xenon lamp from around 1954, the Osram-STUD XBO 1001 D G Xe Osram XBO1001.jpg
An early short arc xenon lamp from around 1954, the Osram-STUD XBO 1001

Interest in the xenon discharge was first aroused by P. Schulz in 1944, following his discovery of its near-continuous spectrum and high colour rendering white light. [2] Owing to wartime limitations on the availability of this noble gas, significant progress was not made until John Aldington [3] of the British Siemens lamp company published his research in 1949. [4]

This triggered intensive efforts at the German Osram company to further develop the technology as a replacement for carbon arcs in cinema projection. The xenon lamp promised tremendous advantages of a more stable arc with less flicker, and its non-consumable electrodes allowed longer films to be shown without interruptions. Osram's primary contribution to this achievement was its thorough research of xenon discharge physics, which directed its developments towards very short arcs for DC operation with a particular electrode and bulb geometry. The cathode is kept small to reach high temperatures for thermionic emission, the anode being larger to dissipate the heat generated as incoming electrons are decelerated. Most light is generated immediately in front of the cathode tip, where arc temperatures reach 10,000°C. The plasma is accelerated towards the anode and stabilised by the electrode shapes plus intrinsic magnetic compression generated by the current flow, and convection effects controlled by the bulb shape.

Following these developments, the first successful public projection using xenon light was performed on 30 October 1950, when excerpts from a colour film ( Schwarzwaldmädel ) were shown during the 216th session of the German Cinematographic Society in Berlin. [5] The technology was commercially introduced by German Osram in 1952. [6] First produced in the 2 kW size (XBO2001),[ citation needed ] and the 1 kW (XBO1001) [7] these lamps saw wide use in movie projection, where they replaced the older, more labor-intensive (to operate) carbon arc lamps.

Modern usage

The white continuous light generated by the xenon arc is spectrally similar to daylight, but the lamp has a rather low efficacy in terms of lumens of visible light output per watt of input power. Today, almost all movie projectors in theaters employ these lamps, with power ratings ranging from 900 watts up to 12 kW. Omnimax (Imax Dome) projection systems use single xenon lamps with ratings as high as 15 kW. As of 2016, laser illumination for digital theater projectors is starting to establish a market presence [8] and has been predicted to supersede the xenon arc lamp for this application. [9]

The very small size of the arc makes it possible to focus the light from the lamp with moderate precision. For this reason, xenon arc lamps of smaller sizes, down to 10 watts, are used in optics and in precision illumination for microscopes and other instruments, although in modern times they are being displaced by single mode laser diodes and white light supercontinuum lasers which can produce a truly diffraction-limited spot. Larger lamps are employed in searchlights where narrow beams of light are generated, or in film production lighting where daylight simulation is required.

All xenon short-arc lamps generate substantial ultraviolet radiation. Xenon has strong spectral lines in the UV bands, and these readily pass through the fused quartz lamp envelope unlike the borosilicate glass used in standard lamps; fused quartz readily passes UV radiation unless it is specially doped. The UV radiation released by a short-arc lamp can cause a secondary problem of ozone generation. The UV radiation strikes oxygen molecules in the air surrounding the lamp, causing them to ionize. Some of the ionized molecules then recombine as O3, ozone. Equipment that uses short-arc lamps as the light source must contain UV radiation shielding and prevent ozone build-up.

Many lamps have a shortwave UV blocking coating on the envelope and are sold as "ozone free" lamps. These "ozone free" lamps are used commonly in indoor applications, where proper ventilation is not easily accessible. Some lamps have envelopes made out of ultra-pure synthetic fused silica (such as "Suprasil"), which roughly doubles the cost, but which allows them to emit useful light into the vacuum UV region. These lamps are normally operated in a pure nitrogen atmosphere.

Lamp construction

An end-view of a 15 kW IMAX lamp showing the liquid-cooling ports Xenon short arc 2.jpg
An end-view of a 15 kW IMAX lamp showing the liquid-cooling ports
An Osram 100 W xenon/mercury short-arc lamp in reflector 100hgxe.jpg
An Osram 100 W xenon/mercury short-arc lamp in reflector

All modern xenon short-arc lamps use a fused quartz envelope with thoriated tungsten electrodes. Fused quartz is the only economically feasible material currently available that can withstand the high pressure (25 atmospheres for an IMAX bulb) and high temperature present in an operating lamp, while still being optically clear. The thorium dopant in the electrodes greatly enhances their electron emission characteristics. Because tungsten and quartz have different coefficients of thermal expansion, the tungsten electrodes are welded to strips of pure molybdenum metal or Invar alloy, which are then melted into the quartz to form the envelope seal.

Because of the very high power levels involved, large lamps are water-cooled. In those used in IMAX projectors, the electrode bodies are made from solid Invar and tipped with thoriated tungsten. An O-ring seals the tube, so that the naked electrodes do not contact the water. In low power applications the electrodes are too cold for efficient electron emission and are not cooled. In high power applications an additional water cooling circuit for each electrode is necessary. To reduce cost, the water circuits are often not separated and the water needs to be deionized to make it electrically non-conductive, which lets the quartz or some laser media dissolve into the water.

Perspective view of 3 kW lamp showing plastic safety shield used during shipping. HLR-OSRAM-3KW-A.jpg
Perspective view of 3 kW lamp showing plastic safety shield used during shipping.

To achieve maximum efficiency, the xenon gas inside short-arc lamps is maintained at an extremely high pressure — up to 30 atmospheres (440 psi / 3040 kPa) — which poses safety concerns. If a lamp is dropped or ruptures while in service, pieces of the lamp envelope can be thrown at high speed. To mitigate this, large xenon short-arc lamps are normally shipped in protective shields, which will contain the envelope fragments should breakage occur. Normally, the shield is removed once the lamp is installed in the lamp housing. When the lamp reaches the end of its useful life, the protective shield is put back on the lamp, and the spent lamp is then removed from the equipment and discarded. As lamps age, the risk of failure increases, so bulbs being replaced are at the greatest risk of explosion. Lamp manufacturers recommend the use of eye protection when handling xenon short-arc lamps. Some lamps, especially those used in IMAX projectors, require the use of full-body protective clothing.

Light generation mechanism

Output profile of a xenon arc lamp. Xenon arc lamp profile.png
Output profile of a xenon arc lamp.

Xenon short-arc lamps come in two distinct varieties: pure xenon, which contains only xenon gas; and xenon-mercury, which contains xenon gas and a small amount of mercury metal.

Pure xenon

In a pure xenon lamp, the majority of the light is generated within a tiny, pinpoint-sized cloud of plasma situated where the electron stream leaves the face of the cathode. The light generation volume is cone-shaped, and the luminous intensity falls off exponentially moving from cathode to anode. Electrons passing through the plasma cloud strike the anode, causing it to heat. As a result, the anode in a xenon short-arc lamp either has to be much larger than the cathode or be water-cooled, to dissipate the heat. The output of a pure xenon short-arc lamp offers fairly continuous spectral power distribution with a color temperature of about 6200K and color rendering index close to 100. [10] However, even in a high pressure lamp there are some very strong emission lines in the near infrared, roughly in the region from 850–900 nm. This spectral region can contain about 10% of the total emitted light.[ citation needed ] Light intensity ranges from 20,000 to 500,000 cd/cm2. An example is the "XBO lamp", which is an OSRAM trade name for a pure xenon short-arc lamp. [10]

For some applications, such as endoscopy and dental technology, light guide systems are included.

Xenon-mercury

A xenon arc lamp (Osram XBO 4000W). Xenon short-arc bulb.jpg
A xenon arc lamp (Osram XBO 4000W).

As in a pure xenon lamp, the majority of the light produced radiates from a pinpoint-sized cloud of plasma near the face of the cathode. However, the plasma cloud in a xenon-mercury lamp is often smaller than that of a pure xenon lamp of equivalent size, due to the electron stream losing its energy more rapidly to the heavier mercury atoms. Xenon-mercury short-arc lamps have a bluish-white spectrum and extremely high UV output. These lamps are used primarily for UV curing applications, sterilizing objects, and generating ozone.

Ceramic xenon lamps

A Cermax 2 kW xenon lamp from a video projector. A pair of heatsinks are clamped on the two metal bands around the perimeter, which also double to supply power to the lamp's electrodes. 2 kW xenon lamba bir vid.jpg
A Cermax 2 kW xenon lamp from a video projector. A pair of heatsinks are clamped on the two metal bands around the perimeter, which also double to supply power to the lamp's electrodes.

Xenon short-arc lamps also are manufactured with a ceramic body and an integral reflector. They are available in many output power ratings with either UV-transmitting or blocking windows. The reflector options are parabolic (for collimated light) or elliptical (for focused light). They are used in a wide variety of applications, such as video projectors, fiber optic illuminators, endoscope and headlamp lighting, dental lighting, and search lights.

Power supply requirements

A 1 kW xenon short-arc lamp power supply with the cover removed. HLR-SHORT-ARC-SUPPLY-B.jpg
A 1 kW xenon short-arc lamp power supply with the cover removed.

Xenon short-arc lamps have a negative temperature coefficient like other gas discharge lamps. They are operated at low-voltage, high-current, DC and started by field emission with a high voltage pulse of 20 to 50kV. As an example, a 450 W lamp operates normally at 18 V and 25 A once started. They are also inherently unstable, prone to phenomena such as plasma oscillation and thermal runaway.[ citation needed ] Because of these characteristics, xenon short-arc lamps require a proper power supply that operates without flickering in the flame, which could ultimately damage the electrodes.

Xenon long-arc-lamps

These are structurally similar to short-arc lamps except that the distance between the electrodes in glass tube is greatly elongated. When mounted within an elliptical reflector, these lamps are frequently used to simulate sunlight in brief flashes, often for photography. Typical uses include solar cell testing (with the use of optical filters), solar simulation for age testing of materials, rapid thermal processing, material inspection and sintering.

Though not commonly known outside of Russia and the former Soviet satellite countries, long arc xenon lamps were used for general illumination of large areas such as rail stations, sports arenas, mining operations, and nuclear power plant high bay spaces. These lamps, Лампа ксеноновая ДКСТ, literally "lamp xenon DKST" were characterized by high wattages ranging from 2kW to 100 kW. The lamps operated in a peculiar discharge regime where the plasma was thermalized, that is, the electrons were not significantly hotter than the gas itself. Under these conditions a positive current-voltage curve was demonstrated. This allowed the larger common sizes such as 5 and 10kW to operate directly from mains AC at 110 and 220 volts respectively without a ballast – only a series igniter was necessary to start the arc.

The lamps produced around 30 lumens/watt, which is about double the efficiency of the tungsten incandescent lamp, but less than more modern sources such as metal halide. They had the advantage of no mercury content, convective air cooling, no high pressure rupture risk, and nearly perfect color rendition. Due to low efficiency and competition from more common lamp types, few installations remain today, but where they do, they can be recognized by a characteristic rectangular/elliptical reflector, and crisp blue-white light from a relatively long tubular source.

See also

Related Research Articles

<span class="mw-page-title-main">Vacuum tube</span> Device that controls current between electrodes

A vacuum tube, electron tube, valve, or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

<span class="mw-page-title-main">Arc lamp</span> Lamp that produces light by an electric arc

An arc lamp or arc light is a lamp that produces light by an electric arc.

<span class="mw-page-title-main">Fluorescent lamp</span> Lamp using fluorescence to produce light

A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet light that then causes a phosphor coating on the inside of the lamp to glow. A fluorescent lamp converts electrical energy into useful light much more efficiently than an incandescent lamp. The typical luminous efficacy of fluorescent lighting systems is 50–100 lumens per watt, several times the efficacy of incandescent bulbs with comparable light output. For comparison, the luminous efficacy of an incandescent bulb may only be 16 lumens per watt.

<span class="mw-page-title-main">Cold cathode</span> Type of electrode and part of cold cathode fluorescent lamp.

A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emission alone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.

<span class="mw-page-title-main">Flashtube</span> Incoherent light source

A flashtube (flashlamp) is an electric arc lamp designed to produce extremely intense, incoherent, full-spectrum white light for a very short time. A flashtube is a glass tube with an electrode at each end and is filled with a gas that, when triggered, ionizes and conducts a high-voltage pulse to make light. Flashtubes are used most in photography; they also are used in science, medicine, industry, and entertainment.

<span class="mw-page-title-main">Gas-filled tube</span> Assembly of electrodes at either end of an insulated tube filled with gas

A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices.

<span class="mw-page-title-main">High-intensity discharge lamp</span> Type of electric lamp/bulb

High-intensity discharge lamps are a type of electrical gas-discharge lamp which produces light by means of an electric arc between tungsten electrodes housed inside a translucent or transparent fused quartz or fused alumina arc tube. This tube is filled with noble gas and often also contains suitable metal or metal salts. The noble gas enables the arc's initial strike. Once the arc is started, it heats and evaporates the metallic admixture. Its presence in the arc plasma greatly increases the intensity of visible light produced by the arc for a given power input, as the metals have many emission spectral lines in the visible part of the spectrum. High-intensity discharge lamps are a type of arc lamp.

<span class="mw-page-title-main">Geissler tube</span> Early gas-discharge lamp

A Geissler tube is an early gas discharge tube used to demonstrate the principles of electrical glow discharge, similar to modern neon lighting, and central to the discovery of the electron. The tube was invented by the German physicist and glassblower Heinrich Geissler in 1857. It consists of a sealed, partially evacuated glass cylinder of various shapes with a metal electrode at each end, containing rarefied gasses such as neon, argon, or air; mercury vapor or other conductive fluids; or ionizable minerals or metals, such as sodium. When a high voltage is applied between the electrodes, an electric current flows through the tube. The current dissociates electrons from the gas molecules, creating ions, and when the electrons recombine with the ions, the gas emits light by fluorescence. The color of light emitted is characteristic of the material within the tube, and many different colors and lighting effects can be achieved. The first gas-discharge lamps, Geissler tubes were novelty items, made in many artistic shapes and colors to demonstrate the new science of electricity. In the early 20th century, the technology was commercialized and evolved into neon lighting.

<span class="mw-page-title-main">Mercury-vapor lamp</span> Light source using an electric arc through mercury vapor

A mercury-vapor lamp is a gas-discharge lamp that uses an electric arc through vaporized mercury to produce light. The arc discharge is generally confined to a small fused quartz arc tube mounted within a larger soda lime or borosilicate glass bulb. The outer bulb may be clear or coated with a phosphor; in either case, the outer bulb provides thermal insulation, protection from the ultraviolet radiation the light produces, and a convenient mounting for the fused quartz arc tube.

<span class="mw-page-title-main">Germicidal lamp</span> Ultraviolet C light-emitting device

A germicidal lamp is an electric light that produces ultraviolet C (UVC) light. This short-wave ultraviolet light disrupts DNA base pairing, causing formation of pyrimidine dimers, and leads to the inactivation of bacteria, viruses, and protozoans. It can also be used to produce ozone for water disinfection. They are used in ultraviolet germicidal irradiation (UVGI).

<span class="mw-page-title-main">Electric arc</span> Electrical breakdown of a gas that results in an ongoing electrical discharge

An electric arc is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma, which may produce visible light. An arc discharge is initiated either by thermionic emission or by field emission. After initiation, the arc relies on thermionic emission of electrons from the electrodes supporting the arc. An arc discharge is characterized by a lower voltage than a glow discharge. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".

<span class="mw-page-title-main">Metal-halide lamp</span> Type of lamp

A metal-halide lamp is an electrical lamp that produces light by an electric arc through a gaseous mixture of vaporized mercury and metal halides. It is a type of high-intensity discharge (HID) gas discharge lamp. Developed in the 1960s, they are similar to mercury vapor lamps, but contain additional metal halide compounds in the quartz arc tube, which improve the efficiency and color rendition of the light. The most common metal halide compound used is sodium iodide. Once the arc tube reaches its running temperature, the sodium dissociates from the iodine, adding orange and reds to the lamp's spectrum from the sodium D line as the metal ionizes. As a result, metal-halide lamps have high luminous efficacy of around 75–100 lumens per watt, which is about twice that of mercury vapor lights and 3 to 5 times that of incandescent lights and produce an intense white light. Lamp life is 6,000 to 15,000 hours. As one of the most efficient sources of high CRI white light, metal halides as of 2005 were the fastest growing segment of the lighting industry. They are used for wide area overhead lighting of commercial, industrial, and public places, such as parking lots, sports arenas, factories, and retail stores, as well as residential security lighting, automotive headlamps and indoor cannabis grow operations.

<span class="mw-page-title-main">Gas tungsten arc welding</span> Welding process

Gas tungsten arc welding is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode are protected from oxidation or other atmospheric contamination by an inert shielding gas. A filler metal is normally used, though some welds, known as 'autogenous welds', or 'fusion welds' do not require it. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma.

<span class="mw-page-title-main">Induction lamp</span> Gas-discharge lamp using electric and magnetic fields to transfer energy to the gas inside

The induction lamp, electrodeless lamp, or electrodeless induction lamp is a gas-discharge lamp in which an electric or magnetic field transfers the power required to generate light from outside the lamp envelope to the gas inside. This is in contrast to a typical gas discharge lamp that uses internal electrodes connected to the power supply by conductors that pass through the lamp envelope. Eliminating the internal electrodes provides two advantages:

<span class="mw-page-title-main">Hydrargyrum medium-arc iodide lamp</span>

Hydrargyrum medium-arc iodide (HMI) is the trademark name of Osram's brand of metal-halide gas discharge medium arc-length lamp, made specifically for film and entertainment applications. Hydrargyrum comes from the Greek name for the element mercury.

<span class="mw-page-title-main">Gas-discharge lamp</span> Artificial light sources powered by ionized gas electric discharge

Gas-discharge lamps are a family of artificial light sources that generate light by sending an electric discharge through an ionized gas, a plasma.

<span class="mw-page-title-main">Laser pumping</span> Powering mechanism for lasers

Laser pumping is the act of energy transfer from an external source into the gain medium of a laser. The energy is absorbed in the medium, producing excited states in its atoms. When for a period of time the number of particles in one excited state exceeds the number of particles in the ground state or a less-excited state, population inversion is achieved. In this condition, the mechanism of stimulated emission can take place and the medium can act as a laser or an optical amplifier. The pump power must be higher than the lasing threshold of the laser.

<span class="mw-page-title-main">Deuterium arc lamp</span> Type of gas-discharge light source that emits ultraviolet light

A deuterium arc lamp is a low-pressure gas-discharge light source often used in spectroscopy when a continuous spectrum in the ultraviolet region is needed.

<span class="mw-page-title-main">Tanning lamp</span> Device which produces ultraviolet light used for indoor tanning

Tanning lamps are the part of a tanning bed, booth or other tanning device which produces ultraviolet light used for indoor tanning. There are hundreds of different kinds of tanning lamps most of which can be classified in two basic groups: low pressure and high pressure. Within the industry, it is common to call high-pressure units "bulbs" and low-pressure units "lamps", although there are many exceptions and not everyone follows this example. This is likely due to the size of the unit, rather than the type. Both types require an oxygen free environment inside the lamp.

A microplasma is a plasma of small dimensions, ranging from tens to thousands of micrometers. Microplasmas can be generated at a variety of temperatures and pressures, existing as either thermal or non-thermal plasmas. Non-thermal microplasmas that can maintain their state at standard temperatures and pressures are readily available and accessible to scientists as they can be easily sustained and manipulated under standard conditions. Therefore, they can be employed for commercial, industrial, and medical applications, giving rise to the evolving field of microplasmas.

References

  1. "Ushio - product data page". 2017-04-18.
  2. Edelgasbögen, P.Schulz, Reichsbericht f.Physik, Vol.1 (1944) p147
  3. "Dr. John Norman Aldington".
  4. Gas Arcs, J.N. Aldington, Transactions of the Illuminating Engineering Society of London, Vol.14 (1949) pp19-51.
  5. Die Neuen Xenon-Hochdrucklampen, K. Ittig, K. Larché, F. Michalk, Technisch-wissenschaftliche Abhandlungen der Osram-Gesellschaft, Vol.6 (1953) pp33-38.
  6. Technik der Spezial-Entladungslampen, publ. Osram GmbH 1989, p24.
  7. "Osram-Stud Short Arc Xenon XBO1001".
  8. "Christie announces installation of laser projectors".
  9. "Example of article discussing laser illumination replacing the xenon arc". 2014-02-22.
  10. 1 2 "OSRAM SYVLANIA XBO" (PDF). Archived from the original (PDF) on 2013-07-18.