Trancitor

Last updated
A theoretical list of elementary active devices deduced from 4 possible combinations of the current and voltage at the input and output, respectively. Four possible kinds of active electronic devices.tif
A theoretical list of elementary active devices deduced from 4 possible combinations of the current and voltage at the input and output, respectively.

The trancitor as the combined word of a "transfer-capacitor" is to be considered as another active-device category besides the transistor as a "transfer-resistor". [1] [2] As observed in the table shown, four kinds of active devices are theoretically deduced. Among them, trancitors are missing to be the third and fourth kinds, [1] whereas transistors, such as bipolar junction transistor (BJT) and field-effect transistor (FET), were already invented as the first and second kinds, respectively. [3] [4] Unlike the transistor switching the current at its output (i.e., current source), the trancitor transfers its input to the voltage output (i.e., voltage source), so an inverse relationship with each other.[ citation needed ]

Contents

History

The term, trancitor, and its concept were first conceived by Sungsik Lee, a professor at the Department of Electronics Engineering, Pusan National University, South Korea, through his article, entitled A Missing Active Device — Trancitor for a New Paradigm of Electronics, in arXiv uploaded on 30 April 2018, [5] and published on 23 August 2018 in IEEE Access. [1] And the supplementary video was also publicised. [6] This story was first featured by the MIT Technology Review on 23 May 2018, entitled Another "Missing" Component could Revolutionize Electronics. [7] Since then, it has been distributed and discussed by many other internet media and communities. [8] [9] [10]

See also

Related Research Articles

<span class="mw-page-title-main">Electronics</span> Branch of physics and electrical engineering

Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles. Electronics is a subfield of electrical engineering, but it differs from it in that it focuses on using active devices such as transistors, diodes, and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog to digital. Electronics also encompasses the fields of microelectronics, nanoelectronics, optoelectronics, and quantum electronics, which deal with the fabrication and application of electronic devices at microscopic, nanoscopic, optical, and quantum scales.

<span class="mw-page-title-main">Amplifier</span> Electronic device/component that increases the strength of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.

<span class="mw-page-title-main">Transistor</span> Solid-state electrically operated switch also used as an amplifier

A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits. Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.

<span class="mw-page-title-main">Moore's law</span> Observation on the growth of integrated circuit capacity

Moore's law is the observation that the number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empirical relationship linked to gains from experience in production.

<span class="mw-page-title-main">Photodiode</span> Converts light into current

A photodiode is a semiconductor diode sensitive to photon radiation, such as visible light, infrared or ultraviolet radiation, X-rays and gamma rays. It produces an electrical current when it absorbs photons. This can be used for detection and measurement applications, or for the generation of electrical power in solar cells. Photodiodes are used in a wide range of applications throughout the electromagnetic spectrum from visible light photocells to gamma ray spectrometers.

<span class="mw-page-title-main">CMOS</span> Technology for constructing integrated circuits

Complementary metal–oxide–semiconductor is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips, and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors, data converters, RF circuits, and highly integrated transceivers for many types of communication.

<span class="mw-page-title-main">Insulated-gate bipolar transistor</span> Type of solid state switch

An insulated-gate bipolar transistor (IGBT) is a three-terminal power semiconductor device primarily forming an electronic switch. It was developed to combine high efficiency with fast switching. It consists of four alternating layers (P–N–P–N) that are controlled by a metal–oxide–semiconductor (MOS) gate structure.

An active-matrix liquid-crystal display (AMLCD) is a type of flat-panel display used in high-resolution TVs, computer monitors, notebook computers, tablet computers and smartphones with an LCD screen, due to low weight, very good image quality, wide color gamut and fast response time.

A thin-film transistor (TFT) is a special type of field-effect transistor (FET) where the transistor is made by thin film deposition. TFTs are grown on a supporting substrate. A common substrate is glass, because the traditional application of TFTs is in liquid-crystal displays (LCDs). This differs from the conventional bulk metal oxide field effect transistor (MOSFET), where the semiconductor material typically is the substrate, such as a silicon wafer.

<span class="mw-page-title-main">Gallium nitride</span> Chemical compound

Gallium nitride is a binary III/V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4 eV affords it special properties for applications in optoelectronic, high-power and high-frequency devices. For example, GaN is the substrate which makes violet (405 nm) laser diodes possible, without requiring nonlinear optical frequency-doubling.

<span class="mw-page-title-main">Fin field-effect transistor</span> Type of non-planar transistor

A fin field-effect transistor (FinFET) is a multigate device, a MOSFET built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the channel, forming a double or even multi gate structure. These devices have been given the generic name "FinFETs" because the source/drain region forms fins on the silicon surface. The FinFET devices have significantly faster switching times and higher current density than planar CMOS technology.

<span class="mw-page-title-main">Active-pixel sensor</span> Image sensor, consisting of an integrated circuit

An active-pixel sensor (APS) is an image sensor, which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor. CMOS sensors are used in digital camera technologies such as cell phone cameras, web cameras, most modern digital pocket cameras, most digital single-lens reflex cameras (DSLRs), mirrorless interchangeable-lens cameras (MILCs), and lensless imaging for cells.

SONOS, short for "silicon–oxide–nitride–oxide–silicon", more precisely, "polycrystalline silicon"—"silicon dioxide"—"silicon nitride"—"silicon dioxide"—"silicon", is a cross sectional structure of MOSFET (metal–oxide–semiconductor field-effect transistor), realized by P.C.Y. Chen of Fairchild Camera and Instrument in 1977. This structure is often used for non-volatile memories, such as EEPROM and flash memories. It is sometimes used for TFT LCD displays. It is one of CTF (charge trap flash) variants. It is distinguished from traditional non-volatile memory structures by the use of silicon nitride (Si3N4 or Si9N10) instead of "polysilicon-based FG (floating-gate)" for the charge storage material. A further variant is "SHINOS" ("silicon"—"hi-k"—"nitride"—"oxide"—"silicon"), which is substituted top oxide layer with high-κ material. Another advanced variant is "MONOS" ("metal–oxide–nitride–oxide–silicon"). Companies offering SONOS-based products include Cypress Semiconductor, Macronix, Toshiba, United Microelectronics Corporation and Floadia.

Resistive random-access memory is a type of non-volatile (NV) random-access (RAM) computer memory that works by changing the resistance across a dielectric solid-state material, often referred to as a memristor. One major advantage of ReRAM over other NVRAM technologies is the ability to scale below 10nm.

<span class="mw-page-title-main">Memristor</span> Nonlinear two-terminal fundamental circuit element

A memristor is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage. It was described and named in 1971 by Leon Chua, completing a theoretical quartet of fundamental electrical components which also comprises the resistor, capacitor and inductor.

The superconducting tunnel junction (STJ) — also known as a superconductor–insulator–superconductor tunnel junction (SIS) — is an electronic device consisting of two superconductors separated by a very thin layer of insulating material. Current passes through the junction via the process of quantum tunneling. The STJ is a type of Josephson junction, though not all the properties of the STJ are described by the Josephson effect.

Passivity is a property of engineering systems, most commonly encountered in analog electronics and control systems. Typically, analog designers use passivity to refer to incrementally passive components and systems, which are incapable of power gain. In contrast, control systems engineers will use passivity to refer to thermodynamically passive ones, which consume, but do not produce, energy. As such, without context or a qualifier, the term passive is ambiguous.

Sasikanth Manipatruni is an American engineer and inventor in the fields of Computer engineering, Integrated circuit technology, Materials Engineering and semiconductor device fabrication. Manipatruni contributed to developments in silicon photonics, spintronics and quantum materials.

<span class="mw-page-title-main">T-MOS thermal sensor</span>

TMOS is a new type of thermal sensor consisting in a micromachined thermally isolated transistor fabricated using CMOS-SOI(Silicon on Insulator) MEMS(Micro electro-mechanical system) technology. It has been developed in the last decade by the Technion - Israel Institute of Technology. A thermal sensor is a device able to detect the thermal radiation emitted by an object located in the FOV(Field Of View) of the sensor. Infrared radiation striking the sensor produces a change in the temperature of the device that as a consequence generates an electric output signal proportional to the incident IR power. The sensor is able to measure the temperature of the object radiating thanks to the information contained in the impinging radiation, exploiting in this sense Stefan - Boltzmann law. TMOS detector has two important characteristics that make it different from others: it's an active and uncooled sensor.

References

  1. 1 2 3 4 Lee, Sungsik (2018). "A Missing Active Device – Trancitor for a New Paradigm of Electronics". IEEE Access. 6: 46962–46967. arXiv: 1805.05842 . Bibcode:2018IEEEA...646962L. doi: 10.1109/ACCESS.2018.2866883 . S2CID   51687588.
  2. "The Transistor". www.nobelprize.org.
  3. "The Transistor - History". www.nobelprize.org.
  4. "W.F. Brinkman et. al., A history of the invention of the transistor and where it will lead us - IEEE Journal of Solid-State Circuits (Volume: 32, Issue: 12, pp. 1858-1865, Dec 1997)". doi:10.1109/4.643644. S2CID   110812004.{{cite journal}}: Cite journal requires |journal= (help)
  5. Lee, Sungsik (30 April 2018). "A Missing Active Device - Trancitor for a New Paradigm of Electronics". IEEE Access. 6: 46962–46967. arXiv: 1805.05842 . Bibcode:2018IEEEA...646962L. doi:10.1109/ACCESS.2018.2866883. S2CID   51687588.
  6. LEE Laboratory (24 May 2018). "A Missing Active Device - Trancitor (Another "Missing" Component - Trancitors)" via YouTube.
  7. "Another "missing" component could revolutionize electronics". MIT Technology Review.
  8. "PNU 포커스 내용 > 뉴스 > 홍보센터 - 부산대학교". www.pusan.ac.kr.
  9. "A new theory predicts the existence of an electronic device that works like an inverse transistor. — Electronic & Electrical Engineering". www.ee.ucl.ac.uk. 8 May 2018.
  10. López, Juan Carlos (2018-10-04). "Transistores inversos: qué son, para qué sirven y por qué aspiran a reinventar la electrónica" (in Spanish). Retrieved 2018-10-12.