Organic field-effect transistor

Last updated
OFET-based flexible display Flexible display.jpg
OFET-based flexible display
Organic CMOS logic circuit. Total thickness is less than 3 mm. Scale bar: 25 mm Organic CMOS logic circuit.jpg
Organic CMOS logic circuit. Total thickness is less than 3 μm. Scale bar: 25 mm

An organic field-effect transistor (OFET) is a field-effect transistor using an organic semiconductor in its channel. OFETs can be prepared either by vacuum evaporation of small molecules, by solution-casting of polymers or small molecules, or by mechanical transfer of a peeled single-crystalline organic layer onto a substrate. These devices have been developed to realize low-cost, large-area electronic products and biodegradable electronics. OFETs have been fabricated with various device geometries. The most commonly used device geometry is bottom gate with top drain and source electrodes, because this geometry is similar to the thin-film silicon transistor (TFT) using thermally grown SiO2 as gate dielectric. Organic polymers, such as poly(methyl-methacrylate) (PMMA), can also be used as dielectric. [1]

Field-effect transistor transistor that uses an electric field to control the electrical behaviour of the device. FETs are also known as unipolar transistors since they involve single-carrier-type operation

The field-effect transistor (FET) is an electronic device which uses an electric field to control the flow of current. FETs are devices with three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source.

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are either injected from appropriate electrodes, upon doping or by photoexcitation.

Polymer solution casting is a manufacturing process used to make flexible plastic components which are typically in the shape of a single or multi-lumen tube commonly utilized in the medical device industry. This manufacturing technology is unique in that the process does not require conventional extrusion or injection molding technologies, yet it readily incorporates components and features traditionally produced by these processes.

Contents

In May 2007, Sony reported the first full-color, video-rate, flexible, all plastic display, [2] [3] in which both the thin-film transistors and the light-emitting pixels were made of organic materials.

Sony Japanese multinational conglomerate corporation

Sony Corporation is a Japanese multinational conglomerate corporation headquartered in Kōnan, Minato, Tokyo. Its diversified business includes consumer and professional electronics, gaming, entertainment and financial services. The company owns the largest music entertainment business in the world, the largest video game console business and one of the largest video game publishing businesses, and is one of the leading manufacturers of electronic products for the consumer and professional markets, and a leading player in the film and television entertainment industry. Sony was ranked 97th on the 2018 Fortune Global 500 list.

History of OFETs

The concept of a field-effect transistor (FET) was first proposed by Julius Edgar Lilienfeld, who received a patent for his idea in 1930. [4] He proposed that a field-effect transistor behaves as a capacitor with a conducting channel between a source and a drain electrode. Applied voltage on the gate electrode controls the amount of charge carriers flowing through the system.

Julius Edgar Lilienfeld Austro-Hungarian physicist

Julius Edgar Lilienfeld was an Austro-Hungarian American physicist and electronic engineer, credited with the first patents on the field-effect transistor (FET) (1925) and electrolytic capacitor (1931). Because of his failure to publish articles in learned journals and because high-purity semiconductor materials were not available yet, his FET patent never achieved fame, causing confusion for later inventors.

Capacitor Passive two-terminal electronic component that stores electrical energy in an electric field

A capacitor is a passive two-terminal electronic component that stores electrical energy in an electric field. The effect of a capacitor is known as capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed to add capacitance to a circuit. The capacitor was originally known as a condenser or condensator. The original name is still widely used in many languages, but not commonly in English.

The first field-effect transistor was designed and prepared by Mohamed Atalla and Dawon Kahng at Bell Labs using a metal–oxide–semiconductor: the MOSFET (metal–oxide–semiconductor field-effect transistor). It was invented in 1959, [5] and presented in 1960. [6] Also known as the MOS transistor, the MOSFET is the most widely manufactured device in the world. [7] [8]

Mohamed Atalla mechanical engineer

Mohamed Atalla, also known by the alias Martin "John" M. Atalla, was an Egyptian-American engineer, inventor and entrepreneur in the fields of electronic semiconductor technology and data security. He invented the MOSFET, also known as the MOS transistor, with Dawon Kahng in 1959. It revolutionized the electronics industry, and is the most widely used semiconductor device in the world. The US Patent and Trademark Office calls the MOSFET a "groundbreaking invention that transformed life and culture around the world". Atalla developed both the PMOS and NMOS semiconductor manufacturing processes for MOSFETs with Kahng in 1960.

Dawon Kahng South Korean engineer

Dawon Kahng was a Korean-American electrical engineer and inventor, known for his work in solid-state electronics. He is best known for inventing the MOSFET with Mohamed Atalla in 1959. The MOSFET has since become the most widely used type of transistor in modern electronics. Atalla and Kahng developed both the PMOS and NMOS types of MOSFETs. Kahng later also invented the floating-gate MOSFET (FGMOS) with Simon Sze in 1967, and they proposed the concepts of floating-gate non-volatile memory (NVM) and reprogrammable ROM. Kahng was inducted into the National Inventors Hall of Fame in 2009.

Bell Labs research and scientific development company

Nokia Bell Labs is an industrial research and scientific development company owned by Finnish company Nokia. Its headquarters are located in Murray Hill, New Jersey. Other laboratories are located around the world. Bell Labs has its origins in the complex past of the Bell System.

Rising costs of materials and manufacturing,[ citation needed ] as well as public interest in more environmentally friendly electronics materials, have supported development of organic based electronics in more recent years. In 1986, Mitsubishi Electric researchers H. Koezuka, A. Tsumura and Tsuneya Ando reported the first organic field-effect transistor, [9] [10] based on a polymer of thiophene molecules. [11] The thiophene polymer is a type of conjugated polymer that is able to conduct charge, eliminating the need to use expensive metal oxide semiconductors. Additionally, other conjugated polymers have been shown to have semiconducting properties. OFET design has also improved in the past few decades. Many OFETs are now designed based on the thin-film transistor (TFT) model, which allows the devices to use less conductive materials in their design. Improvement on these models in the past few years have been made to field-effect mobility and on–off current ratios.

Mitsubishi Electric Japanese electronics and electrical equipments manufacturing company

Mitsubishi Electric Corporation is a Japanese multinational electronics and electrical equipment manufacturing company headquartered in Tokyo, Japan. It is one of the core companies of Mitsubishi.

Thiophene is a heterocyclic compound with the formula C4H4S. Consisting of a planar five-membered ring, it is aromatic as indicated by its extensive substitution reactions. It is a colorless liquid with a benzene-like odor. In most of its reactions, it resembles benzene. Compounds analogous to thiophene include furan (C4H4O) selenophene (C4H4Se) and pyrrole (C4H4NH), which each vary by the heteroatom in the ring.

Materials

One common feature of OFET materials is the inclusion of an aromatic or otherwise conjugated π-electron system, facilitating the delocalization of orbital wavefunctions. Electron withdrawing groups or donating groups can be attached that facilitate hole or electron transport.

Conjugated system

In chemistry, a conjugated system is a system of connected p orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability. It is conventionally represented as having alternating single and multiple bonds. Lone pairs, radicals or carbenium ions may be part of the system, which may be cyclic, acyclic, linear or mixed. The term "conjugated" was coined in 1899 by the German chemist Johannes Thiele.

OFETs employing many aromatic and conjugated materials as the active semiconducting layer have been reported, including small molecules such as rubrene, tetracene, pentacene, diindenoperylene, perylenediimides, tetracyanoquinodimethane (TCNQ), and polymers such as polythiophenes (especially poly(3-hexylthiophene) (P3HT)), polyfluorene, polydiacetylene, poly(2,5-thienylene vinylene), poly(p-phenylene vinylene) (PPV).

The field is very active, with newly synthesized and tested compounds reported weekly in prominent research journals. Many review articles exist documenting the development of these materials. [12] [13] [14] [15] [16]

Rubrene-based OFETs show the highest carrier mobility 20–40 cm2/(V·s). Another popular OFET material is pentacene, which has been used since the 1980s, but with mobilities 10 to 100 times lower (depending on the substrate) than rubrene. [16] The major problem with pentacene, as well as many other organic conductors, is its rapid oxidation in air to form pentacene-quinone. However if the pentacene is preoxidized, and the thus formed pentacene-quinone is used as the gate insulator, then the mobility can approach the rubrene values. This pentacene oxidation technique is akin to the silicon oxidation used in the silicon electronics. [12]

Polycrystalline tetrathiafulvalene and its analogues result in mobilities in the range 0.1–1.4 cm2/(V·s). However, the mobility exceeds 10 cm2/(V·s) in solution-grown or vapor-transport-grown single crystalline hexamethylene-tetrathiafulvalene (HMTTF). The ON/OFF voltage is different for devices grown by those two techniques, presumably due to the higher processing temperatures using in the vapor transport grows. [12]

All the above-mentioned devices are based on p-type conductivity. N-type OFETs are yet poorly developed. They are usually based on perylenediimides or fullerenes or their derivatives, and show electron mobilities below 2 cm2/(V·s). [13]

Device design of organic field-effect transistors

Three essential components of field-effect transistors are the source, the drain and the gate. Field-effect transistors usually operate as a capacitor. They are composed of two plates. One plate works as a conducting channel between two ohmic contacts, which are called the source and the drain contacts. The other plate works to control the charge induced into the channel, and it is called the gate. The direction of the movement of the carriers in the channel is from the source to the drain. Hence the relationship between these three components is that the gate controls the carrier movement from the source to the drain. [17]

When this capacitor concept is applied to the device design, various devices can be built up based on the difference in the controller – i.e. the gate. This can be the gate material, the location of the gate with respect to the channel, how the gate is isolated from the channel, and what type of carrier is induced by the gate voltage into channel (such as electrons in an n-channel device, holes in a p-channel device, and both electrons and holes in a double injection device).

Figure 1. Schematic of three kinds of field-effect transistor (FET): (a) metal-insulator-semiconductor FET (MISFET); (b) metal-semiconductor FET (MESFET); (c) thin-film transistor (TFT). 3 FET structure.png
Figure 1. Schematic of three kinds of field-effect transistor (FET): (a) metal-insulator-semiconductor FET (MISFET); (b) metal-semiconductor FET (MESFET); (c) thin-film transistor (TFT).

Classified by the properties of the carrier, three types of FETs are shown schematically in Figure 1. [18] They are MOSFET (metal–oxide–semiconductor field-effect transistor), MESFET (metal–semiconductor field-effect transistor) and TFT (thin-film transistor).

MOSFET

The most prominent and widely used FET in modern microelectronics is the MOSFET (metal-oxide-semiconductor FET). There are different kinds in this category, such as MISFET (metal–insulator–semiconductor field-effect transistor), and IGFET (insulated-gate FET). A schematic of a MISFET is shown in Figure 1a. The source and the drain are connected by a semiconductor and the gate is separated from the channel by a layer of insulator. If there is no bias (potential difference) applied on the gate, the Band bending is induced due to the energy difference of metal conducting band and the semiconductor Fermi level. Therefore a higher concentration of holes is formed on the interface of the semiconductor and the insulator. When an enough positive bias is applied on the gate contact, the bended band becomes flat. If a larger positive bias is applied, the band bending in the opposite direction occurs and the region close to the insulator-semiconductor interface becomes depleted of holes. Then the depleted region is formed. At an even larger positive bias, the band bending becomes so large that the Fermi level at the interface of the semiconductor and the insulator becomes closer to the bottom of the conduction band than to the top of the valence band, therefore, it forms an inversion layer of electrons, providing the conducting channel. Finally, it turns the device on. [19]

MESFET

The second type of device is described in Fig.1b. The only difference of this one from the MISFET is that the n-type source and drain are connected by an n-type region. In this case, the depletion region extends all over the n-type channel at zero gate voltage in a normally “off” device (it is similar to the larger positive bias in MISFET case). In the normally “on” device, a portion of the channel is not depleted, and thus leads to passage of a current at zero gate voltage.

TFT

The concept of TFT was first proposed by Paul Weimer in 1962. [20] This is illustrated in Figure 1c. Here the source and drain electrodes are directly deposited onto the conducting channel (a thin layer of semiconductor) then a thin film of insulator is deposited between the semiconductor and the metal gate contact. This structure suggests that there is no depletion region to separate the device from the substrate. If there is zero bias, the electrons are expelled from the surface due to the Fermi-level energy difference of the semiconductor and the metal. This leads to band bending of semiconductor. In this case, there is no carrier movement between the source and drain. When the positive charge is applied, the accumulation of electrons on the interface leads to the bending of the semiconductor in an opposite way and leads to the lowering of the conduction band with regards to the Fermi-level of the semiconductor. Then a highly conductive channel forms at the interface (shown in Figure 2).

Figure 2: Schematic of band-bending in the TFT device model. TFT DIA BIAS.png
Figure 2: Schematic of band-bending in the TFT device model.

OFET

OFETs adopt the architecture of TFT. With the development of the conducting polymer, the semiconducting properties of small conjugated molecules have been recognized. The interest in OFETs has grown enormously in the past ten years. The reasons for this surge of interest are manifold. The performance of OFETs, which can compete with that of amorphous silicon (a-Si) TFTs with field-effect mobilities of 0.5–1 cm2 V−1 s−1 and ON/OFF current ratios (which indicate the ability of the device to shut down) of 106–108, has improved significantly. Currently, thin-film OFET mobility values of 5 cm2 V−1 s−1 in the case of vacuum-deposited small molecules [21] and 0.6 cm2 V−1 s−1 for solution-processed polymers [22] have been reported. As a result, there is now a greater industrial interest in using OFETs for applications that are currently incompatible with the use of a-Si or other inorganic transistor technologies. One of their main technological attractions is that all the layers of an OFET can be deposited and patterned at room temperature by a combination of low-cost solution-processing and direct-write printing, which makes them ideally suited for realization of low-cost, large-area electronic functions on flexible substrates. [23]

Device preparation

OFET schematic OfetEng.png
OFET schematic

Thermally oxidized silicon is a traditional substrate for OFETs where the silicon dioxide serves as the gate insulator. The active FET layer is usually deposited onto this substrate using either (i) thermal evaporation, (ii) coating from organic solution, or (iii) electrostatic lamination. The first two techniques result in polycrystalline active layers; they are much easier to produce, but result in relatively poor transistor performance. Numerous variations of the solution coating technique (ii) are known, including dip-coating, spin-coating, inkjet printing and screen printing. The electrostatic lamination technique is based on manual peeling of a thin layer off a single organic crystal; it results in a superior single-crystalline active layer, yet it is more tedious. The thickness of the gate oxide and the active layer is below one micrometer. [12]

Carrier transport

Evolution of carrier mobility in organic field-effect transistor. OFETmobility.png
Evolution of carrier mobility in organic field-effect transistor.

The carrier transport in OFET is specific for two-dimensional (2D) carrier propagation through the device. Various experimental techniques were used for this study, such as Haynes - Shockley experiment on the transit times of injected carriers, time-of-flight (TOF) experiment [24] for the determination of carrier mobility, pressure-wave propagation experiment for probing electric-field distribution in insulators, organic monolayer experiment for probing orientational dipolar changes, optical time-resolved second harmonic generation (TRM-SHG), etc. Whereas carriers propagate through polycrystalline OFETs in a diffusion-like (trap-limited) manner, [25] they move through the conduction band in the best single-crystalline OFETs. [12]

The most important parameter of OFET carrier transport is carrier mobility. Its evolution over the years of OFET research is shown in the graph for polycrystalline and single crystalline OFETs. The horizontal lines indicate the comparison guides to the main OFET competitors – amorphous (a-Si) and polycrystalline silicon. The graph reveals that the mobility in polycrystalline OFETs is comparable to that of a-Si whereas mobility in rubrene-based OFETs (20–40 cm2/(V·s)) approaches that of best poly-silicon devices. [12]

Development of accurate models of charge carrier mobility in OFETs is an active field of research. Fishchuk et al. have developed an analytical model of carrier mobility in OFETs that accounts for carrier density and the polaron effect. [26]

While average carrier density is typically calculated as function of gate voltage when used as an input for carrier mobility models, [27] modulated amplitude reflectance spectroscopy (MARS) has been shown to provide a spatial map of carrier density across an OFET channel. [28]

Light-emitting OFETs

Because an electric current flows through such a transistor, it can be used as a light-emitting device, thus integrating current modulation and light emission. In 2003, a German group reported the first organic light-emitting field-effect transistor (OLET). [29] The device structure comprises interdigitated gold source- and drain electrodes and a polycrystalline tetracene thin film. Both, positive charges (holes) as well as negative charges (electrons) are injected from the gold contacts into this layer leading to electroluminescence from the tetracene.

See also

Related Research Articles

Organic electronics

Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic small molecules or polymers that show desirable electronic properties such as conductivity. Unlike conventional inorganic conductors and semiconductors, organic electronic materials are constructed from organic (carbon-based) small molecules or polymers using synthetic strategies developed in the context of organic and polymer chemistry. One of the promised benefits of organic electronics is their potential low cost compared to traditional inorganic electronics. Attractive properties of polymeric conductors include their electrical conductivity that can be varied by the concentrations of dopants. Relative to metals, they have mechanical flexibility. Some have high thermal stability.

A semiconductor material has an electrical conductivity value falling between that of a conductor, such as metallic copper, and an insulator, such as glass. Its resistance decreases as its temperature increases, which is behaviour opposite to that of a metal. Its conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities ("doping") into the crystal structure. Where two differently-doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics. Some examples of semiconductors are silicon, germanium, gallium arsenide, and elements near the so-called "metalloid staircase" on the periodic table. After silicon, gallium arsenide is the second most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits and others. Silicon is a critical element for fabricating most electronic circuits.

Transistor semiconductor device used to amplify and switch electronic signals and electrical power

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

MOSFET transistor used for amplifying or switching electronic signals

The metal–oxide–semiconductor field-effect transistor, also known as the metal–oxide–silicon transistor (MOS), is a type of field-effect transistor (FET) that is fabricated by the controlled oxidation of silicon. It has an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. The MOSFET was invented by Mohamed Atalla and Dawon Kahng at Bell Labs in 1959, and it is the most widely used semiconductor device in the world.

Thin-film transistor field-effect transistor device

A thin-film transistor (TFT) is a special kind of MOSFET made by depositing thin films of an active semiconductor layer as well as the dielectric layer and metallic contacts over a supporting substrate. A common substrate is glass, because the primary application of TFTs is in liquid-crystal displays (LCDs). This differs from the conventional bulk MOSFET transistor, where the semiconductor material typically is the substrate, such as a silicon wafer.

Silicon on insulator (SOI) technology refers to the use of a layered silicon–insulator–silicon substrate in place of conventional silicon substrates in semiconductor manufacturing, especially microelectronics, to reduce parasitic capacitance within the device, thereby improving performance. SOI-based devices differ from conventional silicon-built devices in that the silicon junction is above an electrical insulator, typically silicon dioxide or sapphire. The choice of insulator depends largely on intended application, with sapphire being used for high-performance radio frequency (RF) and radiation-sensitive applications, and silicon dioxide for diminished short-channel effects in microelectronics devices. The insulating layer and topmost silicon layer also vary widely with application.

A MESFET is a field-effect transistor semiconductor device similar to a JFET with a Schottky (metal-semiconductor) junction instead of a p-n junction for a gate.

Pentacene chemical compound

Pentacene is a polycyclic aromatic hydrocarbon consisting of five linearly-fused benzene rings. This highly conjugated compound is an organic semiconductor. The compound generates excitons upon absorption of ultra-violet (UV) or visible light; this makes it very sensitive to oxidation. For this reason, this compound, which is a purple powder, slowly degrades upon exposure to air and light.

Rubrene chemical compound

Rubrene (5,6,11,12-tetraphenyltetracene) is a red colored polycyclic aromatic hydrocarbon. Rubrene is used as a sensitiser in chemoluminescence and as a yellow light source in lightsticks.

Capacitance–voltage profiling is a technique for characterizing semiconductor materials and devices. The applied voltage is varied, and the capacitance is measured and plotted as a function of voltage. The technique uses a metal–semiconductor junction or a p–n junction or a MOSFET to create a depletion region, a region which is empty of conducting electrons and holes, but may contain ionized donors and electrically active defects or traps. The depletion region with its ionized charges inside behaves like a capacitor. By varying the voltage applied to the junction it is possible to vary the depletion width. The dependence of the depletion width upon the applied voltage provides information on the semiconductor's internal characteristics, such as its doping profile and electrically active defect densities., Measurements may be done at DC, or using both DC and a small-signal AC signal, or using a large-signal transient voltage.

Charge trap flash (CTF) is a semiconductor memory technology used in creating non-volatile NOR and NAND flash memory. The technology differs from the more conventional floating-gate MOSFET technology in that it uses a silicon nitride film to store electrons rather than the doped polycrystalline silicon typical of a floating gate structure. This approach allows memory manufacturers to reduce manufacturing costs five ways:

  1. Fewer process steps are required to form a charge storage node
  2. Smaller process geometries can be used
  3. Multiple bits can be stored on a single flash memory cell.
  4. Improved reliability
  5. Higher yield since the charge trap is less susceptible to point defects in the tunnel oxide layer

Hot carrier injection (HCI) is a phenomenon in solid-state electronic devices where an electron or a “hole” gains sufficient kinetic energy to overcome a potential barrier necessary to break an interface state. The term "hot" refers to the effective temperature used to model carrier density, not to the overall temperature of the device. Since the charge carriers can become trapped in the gate dielectric of a MOS transistor, the switching characteristics of the transistor can be permanently changed. Hot-carrier injection is one of the mechanisms that adversely affects the reliability of semiconductors of solid-state devices.

SONOS, short for "silicon–oxide–nitride–oxide–silicon", more precisely, "polycrystalline silicon"—"silicon dioxide"—"silicon nitride"—"siicon dioxide"—"silicon", is a cross sectional structure of MOSFET, realized by P.C.Y. Chen in 1977. This structure is often used for non-volatile memories, such as EEPROM and flash memories. It is sometimes used for TFT LCD displays. It is one of CTF (charge trap flash) variants. It is distinguished from traditional non-volatile memory structures by the use of silicon nitride (Si3N4 or Si9N10) instead of "polysilicon-based FG (floating-gate)" for the charge storage material. A further variant is "SHINOS" ("silicon"—"hi-k"—"nitride"—"oxide"—"silicon"), which is substituted top oxide layer with high-κ material. Another advanced variant is "MONOS" ("metal–oxide–nitride–oxide–silicon"). Companies offering SONOS-based products include Cypress Semiconductor, Macronix, Toshiba, United Microelectronics Corporation and Floadia.

In electronics, a self-aligned gate is a transistor manufacturing feature whereby a refractory gate electrode region of a MOSFET is used as a mask for the doping of the source and drain regions. This technique ensures that the gate will slightly overlap the edges of the source and drain.

The gate oxide is the dielectric layer that separates the gate terminal of a MOSFET from the underlying source and drain terminals as well as the conductive channel that connects source and drain when the transistor is turned on. Gate oxide is formed by thermal oxidation of the silicon of the channel to form a thin insulating layer of silicon dioxide. The insulating silicon dioxide layer is formed through a process of self-limiting oxidation, which is described by the Deal Grove model. A conductive gate material is subsequently deposited over the gate oxide to form the transistor. The gate oxide serves as the dielectric layer so that the gate can sustain as high as 1 to 5 MV/cm transverse electric field in order to strongly modulate the conductance of the channel.

Polysilicon depletion effect is the phenomenon in which unwanted variation of threshold voltage of the MOSFET devices using polysilicon as gate material is observed, leading to unpredicted behavior of the electronic circuit. Polycrystalline silicon, also called polysilicon, is a material consisting of small silicon crystals. It differs from single-crystal silicon, used for electronics and solar cells, and from amorphous silicon, used for thin film devices and solar cells.

Phenacene group of chemical compounds

Phenacenes are a class of organic compounds consisting of fused aromatic rings. They are polycyclic aromatic hydrocarbons, related to acenes and helicenes from which they differ by the arrangement of the fused rings.

Charge modulation spectroscopy

Charge modulation Spectroscopy (CMS) is an electro-optical spectroscopy technique tool. It's used to study the charge carrier behavior of Organic field-effect transistor (OFET). It measures the charge introduced optical transmission variation by directly probing the accumulation charge at the burning interface of semiconductor and dielectric layer where the conduction channel forms.

References

  1. Salleo, A; Chabinyc, M.L.; Yang, M.S.; Street, RA (2002). "Polymer thin-film transistors with chemically modified dielectric interfaces". Applied Physics Letters. 81 (23): 4383–4385. Bibcode:2002ApPhL..81.4383S. doi:10.1063/1.1527691.
  2. プラスチックフィルム上の有機TFT駆動有機ELディスプレイで世界初のフルカラー表示を実現. sony.co.jp (in Japanese)
  3. Flexible, full-color OLED display. pinktentacle.com (2007-06-24).
  4. Lilienfeld, J.E. (1930-01-28). US 1745175 "Method and apparatus for controlling electric currents"
  5. "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum.
  6. Atalla, M.; Kahng, D. (1960). "Silicon-silicon dioxide field induced surface devices". IRE-AIEE Solid State Device Research Conference.
  7. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum . April 2, 2018. Retrieved 28 July 2019.
  8. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN   1118038231.
  9. "What are OLEDs and OLETs?". LAMP Project. Framework Programmes for Research and Technological Development . Retrieved 29 July 2019.
  10. Tsumura, A.; Koezuka, H.; Ando, Tsuneya (3 November 1986). "Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film". Applied Physics Letters . 49 (18): 1210–1212. doi:10.1063/1.97417. ISSN   0003-6951.
  11. Koezuka, H.; Tsumura, A.; Ando, Tsuneya (1987). "Field-effect transistor with polythiophene thin film". Synthetic Metals. 18 (1–3): 699–704. doi:10.1016/0379-6779(87)90964-7.
  12. 1 2 3 4 5 6 7 Hasegawa, Tatsuo; Takeya, Jun (2009). "Organic field-effect transistors using single crystals". Sci. Technol. Adv. Mater. (free download). 10 (2): 024314. Bibcode:2009STAdM..10b4314H. doi:10.1088/1468-6996/10/2/024314. PMC   5090444 . PMID   27877287.
  13. 1 2 Yamashita, Yoshiro (2009). "Organic semiconductors for organic field-effect transistors". Sci. Technol. Adv. Mater. (free download). 10 (2): 024313. Bibcode:2009STAdM..10b4313Y. doi:10.1088/1468-6996/10/2/024313. PMC   5090443 . PMID   27877286.
  14. Dimitrakopoulos, C.D.; Malenfant, P.R.L. (2002). "Organic Thin Film Transistors for Large Area Electronics". Adv. Mater. 14 (2): 99. doi:10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9.
  15. Reese, Colin; Roberts, Mark; Ling, Mang-Mang; Bao, Zhenan (2004). "Organic thin film transistors". Mater. Today. 7 (9): 20. doi:10.1016/S1369-7021(04)00398-0.
  16. 1 2 Klauk, Hagen (2010). "Organic thin-film transistors". Chem. Soc. Rev. 39 (7): 2643–66. doi:10.1039/B909902F. PMID   20396828.
  17. Shur, Michael (September 1990). Physics of Semiconductor Devices. Englewood Cliffs, NJ: Prentice-Hall. ISBN   978-0-13-666496-3.
  18. Horowitz, Paul; Winfield Hill (1989). The Art of Electronics (2nd ed.). Cambridge University Press. ISBN   978-0-521-37095-0.
  19. Shockley, W. (1952). "A Unipolar "Field-Effect" Transistor". Proc. IRE . 40 (11): 1365–1376. doi:10.1109/JRPROC.1952.273964.
  20. Weimer, P.K. (1962). "TFT – A New Thin-Film Transistor". Proc. IRE . 50 (6): 1462–1469. doi:10.1109/JRPROC.1962.288190.
  21. Baude, P. F.; Ender, D. A.; Haase, M. A.; Kelley, T. W.; Muyres, D. V.; Theiss, S. D. (2003). "Pentacene-based radio-frequency identification circuitry". Phys. Lett. 82 (22): 3964. Bibcode:2003ApPhL..82.3964B. doi:10.1063/1.1579554.
  22. McCulloch, I. presented at the 229th ACS Natl. Meeting, San Diego, CA, March 2005
  23. Sirringhaus, H. (2005). "Device Physics of Solution-Processed Organic Field-Effect Transistors". Adv. Mater. 17 (20): 2411–2425. doi:10.1002/adma.200501152.
  24. Weis, Martin; Lin, Jack; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa (2009). "Analysis of Transient Currents in Organic Field Effect Transistor: The Time-of-Flight Method". J. Phys. Chem. C. 113 (43): 18459. doi:10.1021/jp908381b.
  25. Manaka, Takaaki; Liu, Fei; Weis, Martin; Iwamoto, Mitsumasa (2008). "Diffusionlike electric-field migration in the channel of organic field-effect transistors". Phys. Rev. B. 78 (12): 121302. Bibcode:2008PhRvB..78l1302M. doi:10.1103/PhysRevB.78.121302.
  26. Fishchuk, Ivan I.; Kadashchuk, Andrey; Hoffmann, Sebastian T.; Athanasopoulos, Stavros; Genoe, J.; Bässler, Heinz; Köhler, Anna (2013). "Unified description for hopping transport in organic semiconductors including both energetic disorder and polaronic contributions". Physical Review B. 88 (12): 125202. Bibcode:2013PhRvB..88l5202F. doi:10.1103/PhysRevB.88.125202. ISSN   0163-1829.
  27. Tanase, C.; Meijer, E.J.; Blom, P.W.M.; De Leeuw, D.M. (June 2003). "Local charge carrier mobility in disordered organic field-effect transistors" (PDF). Organic Electronics. 4 (1): 33–37. doi:10.1016/S1566-1199(03)00006-5.
  28. Davis, Andrew R.; Pye, Lorelle N.; Katz, Noam; Hudgings, Janice A.; Carter, Kenneth R. (2014). "Spatially Mapping Charge Carrier Density and Defects in Organic Electronics Using Modulation-Amplified Reflectance Spectroscopy". Advanced Materials. 26 (26): 4539–4545. doi:10.1002/adma.201400859. ISSN   1521-4095. PMID   24889350.
  29. Hepp, Aline; Heil, Holger; Weise, Wieland; Ahles, Marcus; Schmechel, Roland; Von Seggern, Heinz (2003). "Light-Emitting Field-Effect Transistor Based on a Tetracene Thin Film". Phys. Rev. Lett. 91 (15): 157406. Bibcode:2003PhRvL..91o7406H. doi:10.1103/PhysRevLett.91.157406. PMID   14611497.