Specific detectivity

Last updated

Specific detectivity, or D*, for a photodetector is a figure of merit used to characterize performance, equal to the reciprocal of noise-equivalent power (NEP), normalized per square root of the sensor's area and frequency bandwidth (reciprocal of twice the integration time).

Specific detectivity is given by , where is the area of the photosensitive region of the detector, is the bandwidth, and NEP the noise equivalent power in units [W]. It is commonly expressed in Jones units () in honor of Robert Clark Jones who originally defined it. [1] [2]

Given that noise-equivalent power can be expressed as a function of the responsivity (in units of or ) and the noise spectral density (in units of or ) as , it is common to see the specific detectivity expressed as .

It is often useful to express the specific detectivity in terms of relative noise levels present in the device. A common expression is given below.

With q as the electronic charge, is the wavelength of interest, h is Planck's constant, c is the speed of light, k is Boltzmann's constant, T is the temperature of the detector, is the zero-bias dynamic resistance area product (often measured experimentally, but also expressible in noise level assumptions), is the quantum efficiency of the device, and is the total flux of the source (often a blackbody) in photons/sec/cm2.

Detectivity measurement

Detectivity can be measured from a suitable optical setup using known parameters. You will need a known light source with known irradiance at a given standoff distance. The incoming light source will be chopped at a certain frequency, and then each wavelength will be integrated over a given time constant over a given number of frames.

In detail, we compute the bandwidth directly from the integration time constant .

Next, an average signal and rms noise needs to be measured from a set of frames. This is done either directly by the instrument, or done as post-processing.

Now, the computation of the radiance in W/sr/cm2 must be computed where cm2 is the emitting area. Next, emitting area must be converted into a projected area and the solid angle; this product is often called the etendue. This step can be obviated by the use of a calibrated source, where the exact number of photons/s/cm2 is known at the detector. If this is unknown, it can be estimated using the black-body radiation equation, detector active area and the etendue. This ultimately converts the outgoing radiance of the black body in W/sr/cm2 of emitting area into one of W observed on the detector.

The broad-band responsivity, is then just the signal weighted by this wattage.

Where,

From this metric noise-equivalent power can be computed by taking the noise level over the responsivity.

Similarly, noise-equivalent irradiance can be computed using the responsivity in units of photons/s/W instead of in units of the signal. Now, the detectivity is simply the noise-equivalent power normalized to the bandwidth and detector area.

Related Research Articles

In physics, power is the amount of energy transferred or converted per unit time. In the International System of Units, the unit of power is the watt, equal to one joule per second. In older works, power is sometimes called activity. Power is a scalar quantity.

Noise-equivalent power (NEP) is a measure of the sensitivity of a photodetector or detector system. It is defined as the signal power that gives a signal-to-noise ratio of one in a one hertz output bandwidth. An output bandwidth of one hertz is equivalent to half a second of integration time. The units of NEP are watts per square root hertz. The NEP is equal to the noise spectral density divided by the responsivity. The fundamental equation is .

<span class="mw-page-title-main">Phase-locked loop</span> Electronic control system

A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is related to the phase of an input signal. There are several different types; the simplest is an electronic circuit consisting of a variable frequency oscillator and a phase detector in a feedback loop. The oscillator's frequency and phase are controlled proportionally by an applied voltage, hence the term voltage-controlled oscillator (VCO). The oscillator generates a periodic signal of a specific frequency, and the phase detector compares the phase of that signal with the phase of the input periodic signal, to adjust the oscillator to keep the phases matched.

<span class="mw-page-title-main">Shot noise</span> Type of electronic noise

Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process.

<span class="mw-page-title-main">Johnson–Nyquist noise</span> Electronic noise due to thermal vibration within a conductor

Johnson–Nyquist noise is the electronic noise generated by the thermal agitation of the charge carriers inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. Thermal noise is present in all electrical circuits, and in sensitive electronic equipment can drown out weak signals, and can be the limiting factor on sensitivity of electrical measuring instruments. Thermal noise increases with temperature. Some sensitive electronic equipment such as radio telescope receivers are cooled to cryogenic temperatures to reduce thermal noise in their circuits. The generic, statistical physical derivation of this noise is called the fluctuation-dissipation theorem, where generalized impedance or generalized susceptibility is used to characterize the medium.

<span class="mw-page-title-main">Fabry–Pérot interferometer</span> Optical device with parallel mirrors

In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces. Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".

<span class="mw-page-title-main">Effusion</span> Process of a gas escaping through a small hole

In physics and chemistry, effusion is the process in which a gas escapes from a container through a hole of diameter considerably smaller than the mean free path of the molecules. Such a hole is often described as a pinhole and the escape of the gas is due to the pressure difference between the container and the exterior. Under these conditions, essentially all molecules which arrive at the hole continue and pass through the hole, since collisions between molecules in the region of the hole are negligible. Conversely, when the diameter is larger than the mean free path of the gas, flow obeys the Sampson flow law.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

<span class="mw-page-title-main">Squeezed coherent state</span> Type of quantum state

In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude and in the mode of a light wave. The product of the standard deviations of two such operators obeys the uncertainty principle:

Photon noise is the randomness in signal associated with photons arriving at a detector. For a simple black body emitting on an absorber, the noise-equivalent power is given by

Delta-sigma modulation is a method for encoding analog signals into digital signals as found in an analog-to-digital converter (ADC). It is also used to convert high-bit-count, low-frequency digital signals into lower-bit-count, higher-frequency digital signals as part of the process to convert digital signals into analog as part of a digital-to-analog converter (DAC).

Quantum noise is noise arising from the indeterminate state of matter in accordance with fundamental principles of quantum mechanics, specifically the uncertainty principle and via zero-point energy fluctuations. Quantum noise is due to the apparently discrete nature of the small quantum constituents such as electrons, as well as the discrete nature of quantum effects, such as photocurrents.

<span class="mw-page-title-main">Ring laser</span>

Ring lasers are composed of two beams of light of the same polarization traveling in opposite directions ("counter-rotating") in a closed loop.

Location estimation in wireless sensor networks is the problem of estimating the location of an object from a set of noisy measurements. These measurements are acquired in a distributed manner by a set of sensors.

In an electric power system, a harmonic of a voltage or current waveform is a sinusoidal wave whose frequency is an integer multiple of the fundamental frequency. Harmonic frequencies are produced by the action of non-linear loads such as rectifiers, discharge lighting, or saturated electric machines. They are a frequent cause of power quality problems and can result in increased equipment and conductor heating, misfiring in variable speed drives, and torque pulsations in motors and generators.

Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy. Surface sensitivity is achieved by the interpretation of data depending on the intensity of the Auger electrons instead of looking at the relative absorption of the X-rays as in the parent method, EXAFS.

A quantum limit in physics is a limit on measurement accuracy at quantum scales. Depending on the context, the limit may be absolute, or it may only apply when the experiment is conducted with naturally occurring quantum states and can be circumvented with advanced state preparation and measurement schemes.

<span class="mw-page-title-main">Transimpedance amplifier</span> Amplifier that converts current to voltage

In electronics, a transimpedance amplifier (TIA) is a current to voltage converter, almost exclusively implemented with one or more operational amplifiers. The TIA can be used to amplify the current output of Geiger–Müller tubes, photo multiplier tubes, accelerometers, photo detectors and other types of sensors to a usable voltage. Current to voltage converters are used with sensors that have a current response that is more linear than the voltage response. This is the case with photodiodes where it is not uncommon for the current response to have better than 1% nonlinearity over a wide range of light input. The transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. In its simplest form a transimpedance amplifier has just a large valued feedback resistor, Rf. The gain of the amplifier is set by this resistor and because the amplifier is in an inverting configuration, has a value of -Rf. There are several different configurations of transimpedance amplifiers, each suited to a particular application. The one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage. The gain, bandwidth, as well as current and voltage offsets change with different types of sensors, requiring different configurations of transimpedance amplifiers.

Phonon noise, also known as thermal fluctuation noise, arises from the random exchange of energy between a thermal mass and its surrounding environment. This energy is quantized in the form of phonons. Each phonon has an energy of order , where is the Boltzmann constant and is the temperature. The random exchange of energy leads to fluctuations in temperature. This occurs even when the thermal mass and the environment are in thermal equilibrium, i.e. at the same time-average temperature. If a device has a temperature-dependent electrical resistance, then these fluctuations in temperature lead to fluctuations in resistance. Examples of devices where phonon noise is important include bolometers and calorimeters. The superconducting transition edge sensor (TES), which can be operated either as a bolometer or a calorimeter, is an example of a device for which phonon noise can significantly contribute to the total noise.

The spectrum of a chirp pulse describes its characteristics in terms of its frequency components. This frequency-domain representation is an alternative to the more familiar time-domain waveform, and the two versions are mathematically related by the Fourier transform.
The spectrum is of particular interest when pulses are subject to signal processing. For example, when a chirp pulse is compressed by its matched filter, the resulting waveform contains not only a main narrow pulse but, also, a variety of unwanted artifacts many of which are directly attributable to features in the chirp's spectral characteristics.
The simplest way to derive the spectrum of a chirp, now that computers are widely available, is to sample the time-domain waveform at a frequency well above the Nyquist limit and call up an FFT algorithm to obtain the desired result. As this approach was not an option for the early designers, they resorted to analytic analysis, where possible, or to graphical or approximation methods, otherwise. These early methods still remain helpful, however, as they give additional insight into the behavior and properties of chirps.

References

  1. R. C. Jones, "Quantum efficiency of photoconductors," Proc. IRIS2, 9 (1957)
  2. R. C. Jones, "Proposal of the detectivity D** for detectors limited by radiation noise," J. Opt. Soc. Am.50, 1058 (1960), doi : 10.1364/JOSA.50.001058)

PD-icon.svg This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22.