Regenerative circuit

Last updated
Homebuilt Armstrong one-tube regenerative shortwave radio with construction characteristic of the 1930s - 40s. The controls are (left) regeneration, (lower center) filament rheostat, (right) tuning capacitor. Regenerartive Receiver-S7300059.JPG
Homebuilt Armstrong one-tube regenerative shortwave radio with construction characteristic of the 1930s - 40s. The controls are (left) regeneration, (lower center) filament rheostat, (right) tuning capacitor.
Rear view of the above radio, showing the simplicity of the regenerative design. The tickler coil is visible inside the tuning coil and is turned by a shaft from the front panel; this type of adjustable transformer was called a variocoupler. Regenerartive Receiver-S7300056.JPG
Rear view of the above radio, showing the simplicity of the regenerative design. The tickler coil is visible inside the tuning coil and is turned by a shaft from the front panel; this type of adjustable transformer was called a variocoupler .

A regenerative circuit is an amplifier circuit that employs positive feedback (also known as regeneration or reaction). [1] [2] Some of the output of the amplifying device is applied back to its input to add to the input signal, increasing the amplification. [3] One example is the Schmitt trigger (which is also known as a regenerative comparator), but the most common use of the term is in RF amplifiers, and especially regenerative receivers, to greatly increase the gain of a single amplifier stage. [4] [5] [6]

Contents

The regenerative receiver was invented in 1912 [7] and patented in 1914 [8] by American electrical engineer Edwin Armstrong when he was an undergraduate at Columbia University. [9] It was widely used between 1915 and World War II. Advantages of regenerative receivers include increased sensitivity with modest hardware requirements, and increased selectivity because the Q of the tuned circuit will be increased when the amplifying vacuum tube or transistor has its feedback loop around the tuned circuit (via a "tickler" winding or a tapping on the coil) because it introduces some negative resistance.

Due partly to its tendency to radiate interference when oscillating, [6] [5] :p.190 by the 1930s the regenerative receiver was largely superseded by other TRF receiver designs (for example "reflex" receivers) and especially by another Armstrong invention - superheterodyne receivers [10] and is largely considered obsolete. [5] :p.190 [11] Regeneration (now called positive feedback) is still widely used in other areas of electronics, such as in oscillators, active filters, and bootstrapped amplifiers.

A receiver circuit that used larger amounts of regeneration in a more complicated way to achieve even higher amplification, the superregenerative receiver, was also invented by Armstrong in 1922. [11] [5] :p.190 It was never widely used in general commercial receivers, but due to its small parts count it was used in specialized applications. One widespread use during WWII was IFF transceivers, where single tuned circuit completed the entire electronics system. It is still used in a few specialized low data rate applications, [11] such as garage door openers, [12] wireless networking devices, [11] walkie-talkies and toys.

Regenerative receiver

Vacuum tube regenerative receiver schematic. Most regenerative receivers used this Armstrong circuit, in which the feedback was applied to the input (grid) of the tube with a "tickler coil" winding on the tuning inductor. Armstrong regenerative receiver circuit.svg
Vacuum tube regenerative receiver schematic. Most regenerative receivers used this Armstrong circuit, in which the feedback was applied to the input (grid) of the tube with a "tickler coil" winding on the tuning inductor.

The gain of any amplifying device, such as a vacuum tube, transistor, or op amp, can be increased by feeding some of the energy from its output back into its input in phase with the original input signal. This is called positive feedback or regeneration. [13] [3] Because of the large amplification possible with regeneration, regenerative receivers often use only a single amplifying element (tube or transistor). [14] In a regenerative receiver the output of the tube or transistor is connected back to its own input through a tuned circuit (LC circuit). [15] [16] The tuned circuit allows positive feedback only at its resonant frequency. In regenerative receivers using only one active device, the same tuned circuit is coupled to the antenna and also serves to select the radio frequency to be received, usually by means of variable capacitance. In the regenerative circuit discussed here, the active device also functions as a detector; this circuit is also known as a regenerative detector. [16] A regeneration control is usually provided for adjusting the amount of feedback (the loop gain). It is desirable for the circuit design to provide regeneration control that can gradually increase feedback to the point of oscillation and that provides control of the oscillation from small to larger amplitude and back to no oscillation without jumps of amplitude or hysteresis in control. [17] [18] [19] [20]

Two important attributes of a radio receiver are sensitivity and selectivity. [21] The regenerative detector provides sensitivity and selectivity due to voltage amplification and the characteristics of a resonant circuit consisting of inductance and capacitance. The regenerative voltage amplification is where is the non-regenerative amplification and is the portion of the output signal fed back to the L2 C2 circuit. As becomes smaller the amplification increases. [22] The of the tuned circuit (L2 C2) without regeneration is where is the reactance of the coil and represents the total dissipative loss of the tuned circuit. The positive feedback compensates the energy loss caused by , so it may be viewed as introducing a negative resistance to the tuned circuit. [19] The of the tuned circuit with regeneration is . [19] The regeneration increases the . Oscillation begins when . [19]

Regeneration can increase the detection gain of a detector by a factor of 1,700 or more. This is quite an improvement, especially for the low-gain vacuum tubes of the 1920s and early 1930s. The type 36 screen-grid tube (obsolete since the mid-1930s) had a non-regenerative detection gain (audio frequency plate voltage divided by radio frequency input voltage) of only 9.2 at 7.2 MHz, but in a regenerative detector, had detection gain as high as 7,900 at critical regeneration (non-oscillating) and as high as 15,800 with regeneration just above critical. [16] The "... non-oscillating regenerative amplification is limited by the stability of the circuit elements, tube [or device] characteristics and [stability of] supply voltages which determine the maximum value of regeneration obtainable without self-oscillation". [16] Intrinsically, there is little or no difference in the gain and stability available from vacuum tubes, JFETs, MOSFETs or bipolar junction transistors (BJTs).

A major improvement in stability and a small improvement in available gain for reception of CW radiotelegraphy is provided by the use of a separate oscillator, known as a heterodyne oscillator or beat oscillator. [16] [23] Providing the oscillation separately from the detector allows the regenerative detector to be set for maximum gain and selectivity - which is always in the non-oscillating condition. [16] [24] Interaction between the detector and the beat oscillator can be minimized by operating the beat oscillator at half of the receiver operating frequency, using the second harmonic of the beat oscillator in the detector. [23]

AM reception

For AM reception, the gain of the loop is adjusted so it is just below the level required for oscillation (a loop gain of just less than one). The result of this is to greatly increase the gain of the amplifier at the bandpass frequency (resonant frequency), while not increasing it at other frequencies. So the incoming radio signal is amplified by a large factor, 103 - 105, increasing the receiver's sensitivity to weak signals. The high gain also has the effect of reducing the circuit's bandwidth (increasing the Q) by an equal factor, increasing the selectivity of the receiver. [25]

CW reception (autodyne mode)

For the reception of CW radiotelegraphy (Morse code), the feedback is increased just to the point of oscillation. The tuned circuit is adjusted to provide typically 400 to 1000 Hertz difference between the receiver oscillation frequency and the desired transmitting station's signal frequency. The two frequencies beat in the nonlinear amplifier, generating heterodyne or beat frequencies. [26] The difference frequency, typically 400 to 1000 Hertz, is in the audio range; so it is heard as a tone in the receiver's speaker whenever the station's signal is present.

Demodulation of a signal in this manner, by use of a single amplifying device as oscillator and mixer simultaneously, is known as autodyne reception. [27] The term autodyne predates multigrid tubes and is not applied to use of tubes specifically designed for frequency conversion.

SSB reception

For the reception of single-sideband (SSB) signals, the circuit is also adjusted to oscillate as in CW reception. The tuning is adjusted until the demodulated voice is intelligible.

Advantages and disadvantages

Regenerative receivers require fewer components than other types of receiver circuit, such as the TRF and superheterodyne. The circuit's advantage was that it got much more amplification (gain) out of the expensive vacuum tubes, thus reducing the number of tubes required and therefore the cost of a receiver. Early vacuum tubes had low gain and tended to oscillate at radio frequencies (RF). TRF receivers often required 5 or 6 tubes; each stage requiring tuning and neutralization, making the receiver cumbersome, power hungry, and hard to adjust. A regenerative receiver, by contrast, could often provide adequate reception with the use of only one tube. In the 1930s the regenerative receiver was replaced by the superheterodyne circuit in commercial receivers due to the superheterodyne's superior performance and the falling cost of tubes. Since the advent of the transistor in 1946, the low cost of active devices has removed most of the advantage of the circuit. However, in recent years the regenerative circuit has seen a modest comeback in receivers for low cost digital radio applications such as garage door openers, keyless locks, RFID readers and some cell phone receivers.

A disadvantage of this receiver, especially in designs that couple the detector tuned circuit to the antenna, is that the regeneration (feedback) level must be adjusted when the receiver is tuned to a different frequency. The antenna impedance varies with frequency, changing the loading of the input tuned circuit by the antenna, requiring the regeneration to be adjusted. In addition, the Q of the detector tuned circuit components vary with frequency, requiring adjustment of the regeneration control. [5] :p.189

A disadvantage of the single active device regenerative detector in autodyne operation is that the local oscillation causes the operating point to move significantly away from the ideal operating point, resulting in the detection gain being reduced. [24]

Another drawback is that when the circuit is adjusted to oscillate it can radiate a signal from its antenna, so it can cause interference to other nearby receivers. Adding an RF amplifier stage between the antenna and the regenerative detector can reduce unwanted radiation, but would add expense and complexity.

Other shortcomings of regenerative receivers are the sensitive and unstable tuning. These problems have the same cause: a regenerative receiver's gain is greatest when it operates on the verge of oscillation, and in that condition, the circuit behaves chaotically. [28] [29] [30] Simple regenerative receivers electrically couple the antenna to the detector tuned circuit, resulting in the electrical characteristics of the antenna influencing the resonant frequency of the detector tuned circuit. Any movement of the antenna or large objects near the antenna can change the tuning of the detector.

History

1915 Armstrong regenerative receiver 1915 Armstrong Tickler regen receiver.gif
1915 Armstrong regenerative receiver

The inventor of FM radio, Edwin Armstrong, filed US patent 1113149 in 1913 about regenerative circuit while he was a junior in college. [31] He patented the superregenerative circuit in 1922, and the superheterodyne receiver in 1918.

Lee De Forest filed US patent 1170881 in 1914 that became the cause of a contentious lawsuit with Armstrong, whose patent for the regenerative circuit had been issued in 1914. The lawsuit lasted until 1934, winding its way through the appeals process and ending up at the Supreme Court. Armstrong won the first case, lost the second, stalemated at the third, and then lost the final round at the Supreme Court. [32] [33]

At the time the regenerative receiver was introduced, vacuum tubes were expensive and consumed much power, with the added expense and encumbrance of heavy batteries. So this design, getting most gain out of one tube, filled the needs of the growing radio community and immediately thrived. Although the superheterodyne receiver is the most common receiver in use today[ citation needed ], the regenerative radio made the most out of very few parts.

In World War II the regenerative circuit was used in some military equipment. An example is the German field radio "Torn.E.b". [34] Regenerative receivers needed far fewer tubes and less power consumption for nearly equivalent performance.

A related circuit, the superregenerative detector, found several highly important military uses in World War II in Friend or Foe identification equipment and in the top-secret proximity fuze. An example here is the miniature RK61 thyratron marketed in 1938, which was designed specifically to operate like a vacuum triode below its ignition voltage, allowing it to amplify analog signals as a self-quenching superregenerative detector in radio control receivers, [35] and was the major technical development which led to the wartime development of radio-controlled weapons and the parallel development of radio controlled modelling as a hobby. [36]

In the 1930s, the superheterodyne design began to gradually supplant the regenerative receiver, as tubes became far less expensive. In Germany the design was still used in the millions of mass-produced German "peoples receivers" (Volksempfänger) and "German small receivers" (DKE, Deutscher Kleinempfänger). Even after WWII, the regenerative design was still present in early after-war German minimal designs along the lines of the "peoples receivers" and "small receivers", dictated by lack of materials. Frequently German military tubes like the "RV12P2000" were employed in such designs. There were even superheterodyne designs, which used the regenerative receiver as a combined IF and demodulator with fixed regeneration. The superregenerative design was also present in early FM broadcast receivers around 1950. Later it was almost completely phased out of mass production, remaining only in hobby kits, and some special applications, like gate openers.

Superregenerative receiver

Edwin Armstrong presenting the superregenerative receiver at the June 28, 1922 meeting of the Radio Club of America in Havemeyer Hall, Columbia University, New York. His prototype 3 tube receiver was as sensitive as conventional receivers with 9 tubes. Edwin Armstrong and superregenerative receiver.jpg
Edwin Armstrong presenting the superregenerative receiver at the June 28, 1922 meeting of the Radio Club of America in Havemeyer Hall, Columbia University, New York. His prototype 3 tube receiver was as sensitive as conventional receivers with 9 tubes.

The superregenerative receiver uses a second lower-frequency oscillation (within the same stage or by using a second oscillator stage) to provide single-device circuit gains of around one million. This second oscillation periodically interrupts or "quenches" the main RF oscillation. [37] Ultrasonic quench rates between 30 and 100 kHz are typical. After each quenching, RF oscillation grows exponentially, starting from the tiny energy picked up by the antenna plus circuit noise. The amplitude reached at the end of the quench cycle (linear mode) or the time taken to reach limiting amplitude (log mode) depends on the strength of the received signal from which exponential growth started. A low-pass filter in the audio amplifier filters the quench and RF frequencies from the output, leaving the AM modulation. This provides a crude but very effective automatic gain control (AGC).

Advantages and applications

Superregenerative detectors work well for AM and can also be used for wide-band signals such as FM, where they perform "slope detection". Regenerative detectors work well for narrow-band signals, especially for CW and SSB which need a heterodyne oscillator or BFO. A superregenerative detector does not have a usable heterodyne oscillator – even though the superregen always self-oscillates, so CW (Morse code)and SSB (single side band) signals can't be received properly.

Superregeneration is most valuable above 27 MHz, and for signals where broad tuning is desirable. The superregen uses many fewer components for nearly the same sensitivity as more complex designs. It is easily possible to build superregen receivers which operate at microwatt power levels, in the 30 to 6,000 MHz range. It removes the need for the operator to manually adjust regeneration level to just below the point of oscillation - the circuit automatically is taken out of oscillation periodically, but with the disadvantage that small amounts of interference may be a problem for others. These are ideal for remote-sensing applications or where long battery life is important. For many years, superregenerative circuits have been used for commercial products such as garage-door openers, radar detectors, microwatt RF data links, and very low cost walkie-talkies.

Because the superregenerative detectors tend to receive the strongest signal and ignore other signals in the nearby spectrum, the superregen works best with bands that are relatively free of interfering signals. Due to Nyquist's theorem, its quenching frequency must be at least twice the signal bandwidth. But quenching with overtones acts further as a heterodyne receiver mixing additional unneeded signals from those bands into the working frequency. Thus the overall bandwidth of superregenerator cannot be less than 4 times that of the quench frequency, assuming the quenching oscillator produces an ideal sine wave.

Patents

See also

Related Research Articles

An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found in many electronic devices, such as radio receivers, television sets, radio and television broadcast transmitters, computers, computer peripherals, cellphones, radar, and many other devices.

<span class="mw-page-title-main">Superheterodyne receiver</span> Type of radio receiver

A superheterodyne receiver, often shortened to superhet, is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be more conveniently processed than the original carrier frequency. It was invented by French radio engineer and radio manufacturer Lucien Lévy. Virtually all modern radio receivers use the superheterodyne principle.

<span class="mw-page-title-main">Heterodyne</span> Signal processing technique

A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called heterodyning, which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is used to shift signals from one frequency range into another, and is also involved in the processes of modulation and demodulation. The two input frequencies are combined in a nonlinear signal-processing device such as a vacuum tube, transistor, or diode, usually called a mixer.

<span class="mw-page-title-main">Intermediate frequency</span> Frequency to which a carrier wave is shifted during transmission or reception

In communications and electronic engineering, an intermediate frequency (IF) is a frequency to which a carrier wave is shifted as an intermediate step in transmission or reception. The intermediate frequency is created by mixing the carrier signal with a local oscillator signal in a process called heterodyning, resulting in a signal at the difference or beat frequency. Intermediate frequencies are used in superheterodyne radio receivers, in which an incoming signal is shifted to an IF for amplification before final detection is done.

A tetrode is a vacuum tube having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids, and a plate. There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.

<i>Q</i> factor Parameter describing the longevity of energy in a resonator relative to its resonant frequency

In physics and engineering, the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost in one radian of the cycle of oscillation. Q factor is alternatively defined as the ratio of a resonator's centre frequency to its bandwidth when subject to an oscillating driving force. These two definitions give numerically similar, but not identical, results. Higher Q indicates a lower rate of energy loss and the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.

<span class="mw-page-title-main">Negative resistance</span> Property that an increasing voltage results in a decreasing current

In electronics, negative resistance (NR) is a property of some electrical circuits and devices in which an increase in voltage across the device's terminals results in a decrease in electric current through it.

<span class="mw-page-title-main">Tuned radio frequency receiver</span>

A tuned radio frequency receiver is a type of radio receiver that is composed of one or more tuned radio frequency (RF) amplifier stages followed by a detector (demodulator) circuit to extract the audio signal and usually an audio frequency amplifier. This type of receiver was popular in the 1920s. Early examples could be tedious to operate because when tuning in a station each stage had to be individually adjusted to the station's frequency, but later models had ganged tuning, the tuning mechanisms of all stages being linked together, and operated by just one control knob. By the mid 1930s, it was replaced by the superheterodyne receiver patented by Edwin Armstrong.

<span class="mw-page-title-main">Radio receiver</span> Device for receiving radio broadcasts

In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

<span class="mw-page-title-main">Dynatron oscillator</span> Vacuum tube electronic oscillator circuit

In electronics, the dynatron oscillator, invented in 1918 by Albert Hull at General Electric, is an obsolete vacuum tube electronic oscillator circuit which uses a negative resistance characteristic in early tetrode vacuum tubes, caused by a process called secondary emission. It was the first negative resistance vacuum tube oscillator. The dynatron oscillator circuit was used to a limited extent as beat frequency oscillators (BFOs), and local oscillators in vacuum tube radio receivers as well as in scientific and test equipment from the 1920s to the 1940s but became obsolete around World War 2 due to the variability of secondary emission in tubes.

<span class="mw-page-title-main">Armstrong oscillator</span>

The Armstrong oscillator is an electronic oscillator circuit which uses an inductor and capacitor to generate an oscillation. The Meissner patent from 1913 describes a device for generating electrical vibrations, a radio transmitter used for On–off keying. Edwin Armstrong presented in 1915 some recent developments in the Audion receiver. His circuits improved radio frequency reception. Meissner used a Lieben-Reisz-Strauss tube, Armstrong used a de Forest Audion tube. Both circuits are sometimes called a tickler oscillator because the distinguishing feature is that the feedback signal needed to produce oscillations is magnetically coupled into the tank inductor by a "tickler coil" (L2, right). Assuming the coupling is weak but sufficient to sustain oscillation, the oscillation frequency f is determined primarily by the LC circuit and is approximately given by

A Colpitts oscillator, invented in 1918 by Canadian-American engineer Edwin H. Colpitts using vacuum tubes, is one of a number of designs for LC oscillators, electronic oscillators that use a combination of inductors (L) and capacitors (C) to produce an oscillation at a certain frequency. The distinguishing feature of the Colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor.

<span class="mw-page-title-main">Spark-gap transmitter</span> Type of radio transmitter

A spark-gap transmitter is an obsolete type of radio transmitter which generates radio waves by means of an electric spark. Spark-gap transmitters were the first type of radio transmitter, and were the main type used during the wireless telegraphy or "spark" era, the first three decades of radio, from 1887 to the end of World War I. German physicist Heinrich Hertz built the first experimental spark-gap transmitters in 1887, with which he proved the existence of radio waves and studied their properties.

Linear electronic oscillator circuits, which generate a sinusoidal output signal, are composed of an amplifier and a frequency selective element, a filter. A linear oscillator circuit which uses an RC network, a combination of resistors and capacitors, for its frequency selective part is called an RC oscillator.

A direct-conversion receiver (DCR), also known as homodyne, synchrodyne, or zero-IF receiver, is a radio receiver design that demodulates the incoming radio signal using synchronous detection driven by a local oscillator whose frequency is identical to, or very close to the carrier frequency of the intended signal. This is in contrast to the standard superheterodyne receiver where this is accomplished only after an initial conversion to an intermediate frequency.

<span class="mw-page-title-main">Neutrodyne</span>

The Neutrodyne radio receiver, invented in 1922 by Louis Hazeltine, was a particular type of tuned radio frequency (TRF) receiver, in which the instability-causing inter-electrode capacitance of the triode RF tubes is cancelled out or "neutralized" to prevent parasitic oscillations which caused "squealing" or "howling" noises in the speakers of early radio sets. In most designs, a small extra winding on each of the RF amplifiers' tuned anode coils was used to generate a small antiphase signal, which could be adjusted by special variable trim capacitors to cancel out the stray signal coupled to the grid via plate-to-grid capacitance. The Neutrodyne circuit was popular in radio receivers until the 1930s, when it was superseded by the superheterodyne receiver.

Radio receiver design includes the electronic design of different components of a radio receiver which processes the radio frequency signal from an antenna in order to produce usable information such as audio. The complexity of a modern receiver and the possible range of circuitry and methods employed are more generally covered in electronics and communications engineering. The term radio receiver is understood in this article to mean any device which is intended to receive a radio signal in order to generate useful information from the signal, most notably a recreation of the so-called baseband signal which modulated the radio signal at the time of transmission in a communications or broadcast system.

<span class="mw-page-title-main">Reflex receiver</span>

A reflex radio receiver, occasionally called a reflectional receiver, is a radio receiver design in which the same amplifier is used to amplify the high-frequency radio signal (RF) and low-frequency audio (sound) signal (AF). It was first invented in 1914 by German scientists Wilhelm Schloemilch and Otto von Bronk, and rediscovered and extended to multiple tubes in 1917 by Marius Latour and William H. Priess. The radio signal from the antenna and tuned circuit passes through an amplifier, is demodulated in a detector which extracts the audio signal from the radio carrier, and the resulting audio signal passes again through the same amplifier for audio amplification before being applied to the earphone or loudspeaker. The reason for using the amplifier for "double duty" was to reduce the number of active devices, vacuum tubes or transistors, required in the circuit, to reduce the cost. The economical reflex circuit was used in inexpensive vacuum tube radios in the 1920s, and was revived again in simple portable tube radios in the 1930s.

<span class="mw-page-title-main">Autodyne</span>

The autodyne circuit was an improvement to radio signal amplification using the De Forest Audion vacuum tube amplifier. By allowing the tube to oscillate at a frequency slightly different from the desired signal, the sensitivity over other receivers was greatly improved. The autodyne circuit was invented by Edwin Howard Armstrong of Columbia University, New York, NY. He inserted a tuned circuit in the output circuit of the Audion vacuum tube amplifier. By adjusting the tuning of this tuned circuit, Armstrong was able to dramatically increase the gain of the Audion amplifier. Further increase in tuning resulted in the Audion amplifier reaching self-oscillation.

In electronics, a Q multiplier is a circuit added to a radio receiver to improve its selectivity and sensitivity. It is a regenerative amplifier adjusted to provide positive feedback within the receiver. This has the effect of narrowing the receiver's bandwidth, as if the Q factor of its tuned circuits had been increased. The Q multiplier was a common accessory in shortwave receivers of the vacuum tube era as either a factory installation or an add-on device. In use, the Q multiplier had to be adjusted to a point just short of oscillation to provide maximum sensitivity and rejection of interfering signals.

References

  1. S. W. Amos, R. S. Amos, Newnes Dictionary of Electronics, 4th ed., London, U. K.: Newnes, 1999, p. 265, 269
  2. E. Williams, Thermionic Valve Circuits, 4th ed., London: Sir Isacc Pitman & Sons, 1961, p. 151
  3. 1 2 W. L. Everitt, Communication Engineering, 2nd ed. New York: McGraw-Hill, 1937, p. 463
  4. J. Scott-Taggart, The Manual of Modern Radio, London: The Amalgamated Press LTD., 1933, p. 94
  5. 1 2 3 4 5 Technical Manual TM 11-665: C-W and A-M Radio Transmitters and Receivers. Dept. of the Army, US Government Printing Office. 1952. pp. 187–190.
  6. 1 2 Poole, Ian (1998). Basic Radio: Principles and Technology. Newnes. p. 100. ISBN   0080938469.
  7. Hong, Sungook. "A history of the regeneration circuit: From invention to patent litigation" (PDF). Institute of Electrical and Electronics Engineers. Retrieved March 9, 2014.
  8. US Patent 1113149A, Edwin H. Armstrong, Wireless receiving system , filed October 29, 1913, granted October 6, 1914
  9. Armstrong, Edwin H. (September 1915). "Some recent developments in the Audion receiver" (PDF). Proc. IRE. New York: Institute of Radio Engineers. 3 (9): 215–247. doi:10.1109/JRPROC.1915.216677. S2CID   2116636 . Retrieved August 29, 2012.
  10. Malanowski, Gregory (2011). The Race for Wireless: How Radio Was Invented (or Discovered?). AuthorHouse. p. 66. ISBN   978-1463437503.
  11. 1 2 3 4 Williams, Lyle Russell (2006). The New Radio Receiver Building Handbook. Lulu. pp. 24–26, 31–32. ISBN   1847285260.
  12. Bensky, Alan (2004). Short-range Wireless Communication: Fundamentals of RF System Design and Application. Newnes. p. 1. ISBN   008047005X.
  13. "K. R. Sturley, Radio Receiver Design (Part I), New York: John Wiley and Sons, 1943, p. 392" (PDF). Archived from the original (PDF) on 2017-06-27. Retrieved 2018-07-04.
  14. E. Williams, 1961, pp. 156-158
  15. Cruft Electronics Staff, Electronic Circuits and Tubes, New York: McGraw-Hill, 1947, pp. 741-744
  16. 1 2 3 4 5 6 H. A. Robinson, "Regenerative Detectors", QST , vol. XVII, no. 2, p. 26, Feb. 1933
  17. "K. R. Sturley, 1943, pp. 394-395" (PDF). Archived from the original (PDF) on 2017-06-27. Retrieved 2018-07-04.
  18. E. E. Zepler, "Oscillation Hysteresis in Grid Detectors", Wireless Engineer, vol. XXIII, no. 275, Aug. 1946, p. 222
  19. 1 2 3 4 Cruft Electronics Staff, 1947, p. 743
  20. E. E. Zepler, The Technique of Radio Design, 2nd ed., New York: John Wiley and Sons, 1951, p. 168
  21. Cruft Electronics Staff, 1947, p. 741
  22. W. L. Everitt, 1937, p. 464
  23. 1 2 R. J. Talbert, "The Simple Regenerative Receiver with Separate Beat Oscillator", QST , vol. XX, no. 2, p. 15, Feb. 1936
  24. 1 2 R. De Cola, "Increased Sensitivity With the Regenerative Detector", QST , vol. XVIII, no. 12, p. 24, Dec. 1934
  25. The Radio Amateur's Handbook. American Radio Relay League. 1978. pp. 241–242.
  26. Signal Corps U.S. Army, The Principles Underlying Radio Communication, 2nd ed. Washington, DC: U.S.G.P.O., 1922, p. 501
  27. Signal Corps U.S. Army, 1922, p. 503
  28. Domine M.W. Leenaerts and Wim M.G. van Bokhoven, “Amplification via chaos in regenerative detectors,” Proceedings of SPIE *, vol. 2612**, pages 136-145 (December 1995). (* SPIE = Society of Photo-optical Instrumentation Engineers; renamed: International Society for Optical Engineering) (** Jaafar M.H. Elmirghani, ed., Chaotic Circuits for Communication -- a collection of papers presented at the SPIE conference of 23–24 October 1995 in Philadelphia, Pennsylvania.)
  29. Domine M.W. Leenaerts, “Chaotic behavior in superregenerative detectors,” IEEE Transactions on Circuits and Systems Part 1: Fundamental Theory and Applications, vol. 43, no. 3, pages 169-176 (March 1996).
  30. In 1922, during his development of the superregenerative receiver, Edwin Armstrong noted signs of chaotic behavior in his circuits. See: Edwin H. Armstrong (1922) "Some recent developments of regenerative circuits," Proceedings of the Institute of Radio Engineers, 10 (8) : 244-260. From p. 252: " ... a free oscillation starts every time the resistance of the circuit becomes negative. ... The free oscillations produced in the system when no signaling emf. is impressed, must be initiated by some irregularity of operation of the vacuum tubes, ... ."
  31. "The Armstrong Patent", Radio Broadcast, Garden City, NY: Doubleday, Page & Co., 1 (1): 71–72, May 1922
  32. Morse 1925 , p. 55
  33. Lewis 1991
  34. German : Tornisterfunkgerät = Manpack radio
  35. "Subminiature gas triode type RK61 data sheet" (PDF). Raytheon Company. Archived from the original (PDF) on 20 March 2017. Retrieved 20 March 2017.
  36. George Honnest-Redlich Radio Control for Models (1950) p. 7
  37. Cruft Electronics Staff, 1947, p. 744