Bootstrapping (electronics)

Last updated

In the field of electronics, a technique where part of the output of a system is used at startup can be described as bootstrapping.

Contents

A bootstrap circuit is one where part of the output of an amplifier stage is applied to the input, so as to alter the input impedance of the amplifier. When applied deliberately, the intention is usually to increase rather than decrease the impedance. [1]

In the domain of MOSFET circuits, bootstrapping is commonly used to mean pulling up the operating point of a transistor above the power supply rail. [2] [3] The same term has been used somewhat more generally for dynamically altering the operating point of an operational amplifier (by shifting both its positive and negative supply rail) in order to increase its output voltage swing (relative to the ground). [4] In the sense used in this paragraph, bootstrapping an operational amplifier means "using a signal to drive the reference point of the op-amp's power supplies". [5] A more sophisticated use of this rail bootstrapping technique is to alter the non-linear C/V characteristic of the inputs of a JFET op-amp in order to decrease its distortion. [6] [7]

Input impedance

Bootstrap capacitors C1 and C2 in a BJT emitter follower circuit Emitter follower.png
Bootstrap capacitors C1 and C2 in a BJT emitter follower circuit

In analog circuit designs, a bootstrap circuit is an arrangement of components deliberately intended to alter the input impedance of a circuit. Usually it is intended to increase the impedance, by using a small amount of positive feedback, usually over two stages. This was often necessary in the early days of bipolar transistors, which inherently have quite a low input impedance. Because the feedback is positive, such circuits can suffer from poor stability and noise performance compared to ones that don't bootstrap.

Negative feedback may alternatively be used to bootstrap an input impedance, causing the apparent impedance to be reduced. This is seldom done deliberately, however, and is normally an unwanted result of a particular circuit design. A well-known example of this is the Miller effect, in which an unavoidable feedback capacitance appears increased (i.e. its impedance appears reduced) by negative feedback. One popular case where this is done deliberately is the Miller compensation technique for providing a low-frequency pole inside an integrated circuit. To minimize the size of the necessary capacitor, it is placed between the input and an output which swings in the opposite direction. This bootstrapping makes it act like a larger capacitor to ground.

Driving MOS transistors

An N-MOSFET/IGBT needs a significantly positive charge (VGS > Vth) applied to the gate in order to turn on. Using only N-channel MOSFET/IGBT devices is a common cost reduction method due largely to die size reduction (there are other benefits as well). However, using nMOS devices in place of pMOS devices means that a voltage higher than the power rail supply (V+) is needed in order to bias the transistor into linear operation (minimal current limiting) and thus avoid significant heat loss.

A bootstrap capacitor is connected from the supply rail (V+) to the output voltage. Usually the source terminal of the N-MOSFET is connected to the cathode of a recirculation diode allowing for efficient management of stored energy in the typically inductive load (See Flyback diode). Due to the charge storage characteristics of a capacitor, the bootstrap voltage will rise above (V+) providing the needed gate drive voltage.

A bootstrap circuit is often used in each half-bridge of an all-N-MOSFET H-bridge. When the low-side N-FET is on, current from the power rail (V+) flows through the bootstrap diode and charges the bootstrap capacitor through that low-side N-FET. When the low-side N-FET turns off, the low side of the bootstrap capacitor remains connected to the source of the high-side N-FET, and the capacitor discharges some of its energy driving the gate of the high-side N-FET to a voltage sufficiently above V+ to turn the high-side N-FET fully on; while the bootstrap diode blocks that above-V+ voltage from leaking back to the power rail V+. [8]

A MOSFET/IGBT is a voltage-controlled device which, in theory, will not have any gate current. This makes it possible to utilize the charge inside the capacitor for control purposes. However, eventually the capacitor will lose its charge due to parasitic gate current and non-ideal (i.e. finite) internal resistance, so this scheme is only used where there is a steady pulse present. This is because the pulsing action allows for the capacitor to discharge (at least partially if not completely). Most control schemes that use a bootstrap capacitor force the high side driver (N-MOSFET) off for a minimum time to allow for the capacitor to refill. This means that the duty cycle will always need to be less than 100% to accommodate for the parasitic discharge unless the leakage is accommodated for in another manner.

Switch-mode power supplies

In switch-mode power supplies, the control circuits are powered from the output. To start the power supply, a leakage resistance can be used to trickle-charge the supply rail for the control circuit to start it oscillating. This approach is less costly and simpler than providing a separate linear power supply just to start the regulator circuit. [9]

Output swing

AC amplifiers can use bootstrapping to increase output swing. A capacitor (usually referred as bootstrap capacitor) is connected from the output of the amplifier to the bias circuit, providing bias voltages that exceed the power supply voltage. Emitter followers can provide rail-to-rail output in this way, which is a common technique in class AB audio amplifiers.

Digital integrated circuits

Within an integrated circuit a bootstrap method is used to allow internal address and clock distribution lines to have an increased voltage swing. The bootstrap circuit uses a coupling capacitor, formed from the gate/source capacitance of a transistor, to drive a signal line to slightly greater than the supply voltage. [10]

Some all-pMOS integrated circuits such as the Intel 4004 and the Intel 8008 use that 2-transistor "bootstrap load" circuit. [11] [12] [13]

See also

Related Research Articles

Amplifier Electronic device/component that increases the strength of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the power of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is a circuit that has a power gain greater than one.

Operational amplifier High-gain voltage amplifier with a differential input

An operational amplifier is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. In this configuration, an op amp produces an output potential that is typically 100,000 times larger than the potential difference between its input terminals. Operational amplifiers had their origins in analog computers, where they were used to perform mathematical operations in linear, non-linear, and frequency-dependent circuits.

Comparator

In electronics, a comparator is a device that compares two voltages or currents and outputs a digital signal indicating which is larger. It has two analog input terminals and and one binary digital output . The output is ideally

Differential amplifier Electrical circuit component which amplifies the difference of two analog signals

A differential amplifier is a type of electronic amplifier that amplifies the difference between two input voltages but suppresses any voltage common to the two inputs. It is an analog circuit with two inputs and and one output , in which the output is ideally proportional to the difference between the two voltages:

Buffer amplifier Electronic amplifier, a circuit component

A buffer amplifier is one that provides electrical impedance transformation from one circuit to another, with the aim of preventing the signal source from being affected by whatever currents that the load may be produced with. The signal is 'buffered from' load currents. Two main types of buffer exist: the voltage buffer and the current buffer.

Common emitter

In electronics, a common-emitter amplifier is one of three basic single-stage bipolar-junction-transistor (BJT) amplifier topologies, typically used as a voltage amplifier. It offers high current gain, medium input resistance and a high output resistance. The output of a common emitter amplifier is 180 degrees out of phase to the input signal.

Current source Electronic circuit which delivers or absorbs electric current regardless of voltage

A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it.

Class-D amplifier Audio amplifier based on digital switching

A class-D amplifier or switching amplifier is an electronic amplifier in which the amplifying devices operate as electronic switches, and not as linear gain devices as in other amplifiers. They operate by rapidly switching back and forth between the supply rails, being fed by a modulator using pulse width, pulse density, or related techniques to encode the audio input into a pulse train. The audio escapes through a simple low-pass filter into the loudspeaker. The high-frequency pulses are blocked. Since the pairs of output transistors are never conducting at the same time, there is no other path for current flow apart from the low-pass filter/loudspeaker. For this reason, efficiency can exceed 90%.

The cascode is a two-stage amplifier that consists of a common-emitter stage feeding into a common-base stage.

The precision rectifier is a configuration obtained with an operational amplifier in order to have a circuit behave like an ideal diode and rectifier. It is very useful for high-precision signal processing. With the help of a precision rectifier the high-precision signal processing can be done very easily.

This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See Comparator applications for further information.

Push–pull converter

A push–pull converter is a type of DC-to-DC converter, a switching converter that uses a transformer to change the voltage of a DC power supply. The distinguishing feature of a push-pull converter is that the transformer primary is supplied with current from the input line by pairs of transistors in a symmetrical push-pull circuit. The transistors are alternately switched on and off, periodically reversing the current in the transformer. Therefore, current is drawn from the line during both halves of the switching cycle. This contrasts with buck-boost converters, in which the input current is supplied by a single transistor which is switched on and off, so current is only drawn from the line during half the switching cycle. During the other half the output power is supplied by energy stored in inductors or capacitors in the power supply. Push–pull converters have steadier input current, create less noise on the input line, and are more efficient in higher power applications.

Operational transconductance amplifier

The operational transconductance amplifier (OTA) is an amplifier whose differential input voltage produces an output current. Thus, it is a voltage controlled current source (VCCS). There is usually an additional input for a current to control the amplifier's transconductance. The OTA is similar to a standard operational amplifier in that it has a high impedance differential input stage and that it may be used with negative feedback.

Clamper (electronics)

A clamper is an electronic circuit that fixes either the positive or the negative peak excursions of a signal to a defined value by shifting its DC value. The clamper does not restrict the peak-to-peak excursion of the signal, it moves the whole signal up or down so as to place the peaks at the reference level. A diode clamp consists of a diode, which conducts electric current in only one direction and prevents the signal exceeding the reference value; and a capacitor, which provides a DC offset from the stored charge. The capacitor forms a time constant with a resistor load, which determines the range of frequencies over which the clamper will be effective.

Tube sound Characteristic quality of sounds from vacuum tube amplifiers

Tube sound is the characteristic sound associated with a vacuum tube amplifier, a vacuum tube-based audio amplifier. At first, the concept of tube sound did not exist, because practically all electronic amplification of audio signals was done with vacuum tubes and other comparable methods were not known or used. After introduction of solid state amplifiers, tube sound appeared as the logical complement of transistor sound, which had some negative connotations due to crossover distortion in early transistor amplifiers. However, solid state amplifiers have been developed to be flawless and the sound is later regarded neutral compared to tube amplifiers. Thus the tube sound now means 'euphonic distortion.' The audible significance of tube amplification on audio signals is a subject of continuing debate among audio enthusiasts.

The Miller theorem refers to the process of creating equivalent circuits. It asserts that a floating impedance element, supplied by two voltage sources connected in series, may be split into two grounded elements with corresponding impedances. There is also a dual Miller theorem with regards to impedance supplied by two current sources connected in parallel. The two versions are based on the two Kirchhoff's circuit laws.

Transimpedance amplifier Amplifier that converts current to voltage

In electronics, a transimpedance amplifier (TIA) is a current to voltage converter, almost exclusively implemented with one or more operational amplifiers. The TIA can be used to amplify the current output of Geiger–Müller tubes, photo multiplier tubes, accelerometers, photo detectors and other types of sensors to a usable voltage. Current to voltage converters are used with sensors that have a current response that is more linear than the voltage response. This is the case with photodiodes where it is not uncommon for the current response to have better than 1% nonlinearity over a wide range of light input. The transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. In its simplest form a transimpedance amplifier has just a large valued feedback resistor, Rf. The gain of the amplifer is set by this resistor and because the amplifier is in an inverting configuration, has a value of -Rf. There are several different configurations of transimpedance amplifiers, each suited to a particular application. The one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage. The gain, bandwidth, as well as current and voltage offsets change with different types of sensors, requiring different configurations of transimpedance amplifiers.

A gate driver is a power amplifier that accepts a low-power input from a controller IC and produces a high-current drive input for the gate of a high-power transistor such as an IGBT or power MOSFET. Gate drivers can be provided either on-chip or as a discrete module. In essence, a gate driver consists of a level shifter in combination with an amplifier. A gate driver IC serves as the interface between control signals and power switches. An integrated gate-driver solution reduces design complexity, development time, bill of materials (BOM), and board space while improving reliability over discretely-implemented gate-drive solutions.

In electronics, power amplifier classes are letter symbols applied to different power amplifier types. The class gives a broad indication of an amplifier's characteristics and performance. The classes are related to the time period that the active amplifier device is passing current, expressed as a fraction of the period of a signal waveform applied to the input. A class A amplifier is conducting through all the period of the signal; Class B only for one-half the input period, class C for much less than half the input period. A Class D amplifier operates its output device in a switching manner; the fraction of the time that the device is conducting is adjusted so a pulse-width modulation output is obtained from the stage.

Diamond buffer

The diamond buffer or diamond follower is a four-transistor, two-stage, push-pull, translinear emitter follower, or less commonly source follower, in which the input transistors are folded, or placed upside-down with respect to the output transistors. Like any unity buffer, the diamond buffer does not alter the phase and magnitude of input voltage signal; its primary purpose is to interface a high-impedance voltage source with a low-impedance, high-current load. Unlike the more common compound emitter follower, where each input transistor drives the output transistor of the same polarity, each input transistor of a diamond buffer drives the output transistor of the opposite polarity. When the transistors operate in close thermal contact, the input transistors stabilize the idle current of the output pair, eliminating the need for a bias spreader.

References

  1. IEEE Standard 100 Authoritative Dictionary of IEEE Standards Terms (7th ed.). IEEE Press. 2000. p. 123. ISBN   0-7381-2601-2.
  2. Uyemura, John P. (1999). CMOS Logic Circuit Design. Springer. p. 319. ISBN   978-0-7923-8452-6.
  3. Pelgrom, Marcel J.M. (2012). Analog-to-Digital Conversion (2nd ed.). Springer. pp. 210–211. ISBN   978-1-4614-1371-4.
  4. King, Grayson; Watkins, Tim (May 13, 1999). "Bootstrapping your op amp yields wide voltage swings" (PDF). EDN: 117–129.
  5. Graeme, Jerald (1994). "Op-amp distortion measurement bypasses test-equipment limitations". In Hickman, Ian; Travis, Bill (eds.). The EDN Designer's Companion. Butterworth-Heinemann. p. 205. ISBN   978-0-7506-1721-5.
  6. Jung, Walt. "Bootstrapped IC Substrate Lowers Distortion in JFET Op Amps" (PDF). Analog Devices application note AN-232.
  7. Douglas Self (2014). Small Signal Audio Design (2nd ed.). Focal Press. pp. 136–142. ISBN   978-1-134-63513-9.
  8. Diallo, Mamadou (2018). "Bootstrap Circuitry Selection for Half-Bridge Configurations" (PDF). Texas Instruments.
  9. Mack, Raymond A. (2005). Demystifying switching power supplies. Newnes. p. 121. ISBN   0-7506-7445-8.
  10. Dally, William J.; Poulton, John W. (1998). Digital systems engineering. Cambridge University Press. pp. 190–1. ISBN   0-521-59292-5.
  11. Faggin, Federico. "The New Methodology for Random Logic Design" . Retrieved June 3, 2017.
  12. Faggin, Federico. "The Bootstrap Load" . Retrieved June 3, 2017.
  13. Shirriff, Ken (October 2020). "How the bootstrap load made the historic Intel 8008 processor possible".