This article needs additional citations for verification .(October 2014) |
A flyback diode is any diode connected across an inductor used to eliminate flyback, which is the sudden voltage spike seen across an inductive load when its supply current is suddenly reduced or interrupted. It is used in circuits in which inductive loads are controlled by switches, and in switching power supplies and inverters.
Flyback circuits have been used since 1930 and were refined starting in 1950 for use in television receivers. The word flyback comes from the horizontal movement of the electron beam in a cathode ray tube, because the beam flew back to begin the next horizontal line. [1] [2]
This diode is known by many other names, such as snubber diode, commutating diode, freewheeling diode, flywheel diode, suppressor diode, clamp diode, or catch diode. [3] [4]
Fig. 1 shows an inductor connected to a battery - a constant voltage source. The resistor represents the small residual resistance of the inductor's wire windings. When the switch is closed, the voltage from the battery is applied to the inductor, causing current from the battery's positive terminal to flow down through the inductor and resistor. [5] [6] The increase in current causes a back EMF (voltage) across the inductor due to Faraday's law of induction which opposes the change in current. Since the voltage across the inductor is limited to the battery's voltage of 24 volts, the rate of increase of the current is limited to an initial value of so the current through the inductor increases slowly as energy from the battery is stored in the inductor's magnetic field. As the current rises, more voltage is dropped across the resistor and less across the inductor, until the current reaches a steady value of with all the battery voltage across the resistance and none across the inductance.
However, the current drops rapidly when the switch is opened in Fig. 2. The inductor resists the drop in current by developing a very large induced voltage of polarity in the opposite direction of the battery, positive at the lower end of the inductor and negative at the upper end. [5] [3] [6] This voltage pulse, sometimes called the inductive "kick", which can be much larger than the battery voltage, appears across the switch contacts. It causes electrons to jump the air gap between the contacts, causing a momentary electric arc to develop across the contacts as the switch is opened. The arc continues until the energy stored in the inductor's magnetic field is dissipated as heat in the arc. The arc can damage the switch contacts, causing pitting and burning, eventually destroying them. If a transistor is used to switch the current, such as switching power supplies, the high reverse voltage can destroy the transistor.
To prevent the inductive voltage pulse on turnoff, a diode is connected across the inductor, as shown in Fig. 3. [5] [3] [6] The diode doesn't conduct current while the switch is closed because it is reverse-biased by the battery voltage, so it doesn't interfere with the normal operation of the circuit. However, when the switch is opened, the induced voltage across the inductor of opposite polarity forward biases the diode, and it conducts current, limiting the voltage across the inductor and thus preventing the arc from forming at the switch. The inductor and diode momentarily form a loop or circuit powered by the stored energy in the inductor. This circuit supplies a current path to the inductor to replace the current from the battery, so the inductor current does not drop abruptly and does not develop a high voltage. The voltage across the inductor is limited to the forward voltage of the diode, around 0.7 - 1.5V. This "freewheeling" or "flyback" current through the diode and inductor decreases slowly to zero as the magnetic energy in the inductor is dissipated as heat in the series resistance of the windings. This may take a few milliseconds in a small inductor.
These images show the voltage spike and its elimination through the use of a flyback diode (1N4007). In this case, the inductor is a solenoid connected to a 24V DC power supply. Each waveform was taken using a digital oscilloscope set to trigger when the voltage across the inductor dipped below zero. Note the different scaling: left image 50V/division, right image 1V/division. In Figure 1, the voltage as measured across the switch, bounces/spikes to around -300 V. In Figure 2, a flyback diode was added in antiparallel with the solenoid. Instead of spiking to -300 V, the flyback diode only allows approximately -1.4 V of potential to be built up (-1.4 V is a combination of the forward bias of the 1N4007 diode (1.1 V) and the foot of wiring separating the diode and the solenoid[ dubious – discuss ]). The waveform in Figure 2 is also smoother than the waveform in Figure 1, perhaps due to arcing at the switch for Figure 1. In both cases, the total time for the solenoid to discharge is a few milliseconds, though the lower voltage drop across the diode will slow relay dropout.
When used with a DC coil relay, a flyback diode can cause delayed drop-out of the contacts when power is removed, due to the continued circulation of current in the relay coil and diode. When rapid opening of the contacts is important, a resistor or reverse-biased Zener diode can be placed in series with the diode to help dissipate the coil energy faster, at the expense of higher voltage at the switch.
Schottky diodes are preferred in flyback diode applications for switching power converters because they have the lowest forward drop (~0.2 V rather than >0.7 V for low currents) and are able to quickly respond to reverse bias (when the inductor is being re-energized). They, therefore, dissipate less energy while transferring energy from the inductor to a capacitor.
According to Faraday's law of induction, if the current through an inductance changes, this inductance induces a voltage, so the current will flow as long as there is energy in the magnetic field. If the current can only flow through the air, the voltage is so high that the air conducts. That is why in mechanically switched circuits, the near-instantaneous dissipation which occurs without a flyback diode is often observed as an arc across the opening mechanical contacts. Energy is dissipated in this arc primarily as intense heat, which causes undesirable premature erosion of the contacts. Another way to dissipate energy is through electromagnetic radiation.
Similarly, for non-mechanical solid-state switching (i.e., a transistor), large voltage drops across an unactivated solid-state switch can destroy the component in question (either instantaneously or through accelerated wear and tear).
Some energy is also lost from the system as a whole and from the arc as a broad spectrum of electromagnetic radiation, in the form of radio waves and light. These radio waves can cause undesirable clicks and pops on nearby radio receivers.
To minimise the antenna-like radiation of this electromagnetic energy from wires connected to the inductor, the flyback diode should be connected as physically close to the inductor as practicable. This approach also minimises those parts of the circuit that are subject to an unwanted high-voltage — a good engineering practice.
The voltage at an inductor is, by the law of electromagnetic induction and the definition of inductance:
If there is no flyback diode but only something with great resistance (such as the air between two metal contacts), say, R2, we will approximate it as:
If we open the switch and ignore VCC and R1, we get:
or
which is a differential equation with the solution:
We observe that the current will decrease faster if the resistance is high, such as with air.
Now if we open the switch with the diode in place, we only need to consider L1, R1 and D1. For I > 0, we can assume:
so:
which is:
whose (first order differential equation) solution is:
We can calculate the time it needs to switch off by determining for which t it is I(t) = 0.
If VCC = I0R1, then
Flyback diodes are commonly used when semiconductor devices switch inductive loads off: in relay drivers, H-bridge motor drivers, and so on. A switched-mode power supply also exploits this effect, but the energy is not dissipated to heat and is instead used to pump a packet of additional charge into a capacitor, in order to supply power to a load.
When the inductive load is a relay, the flyback diode can noticeably delay the release of the relay by keeping the coil current flowing longer. A resistor in series with the diode will make the circulating current decay faster at the drawback of an increased reverse voltage. A zener diode in series but with reverse polarity with regard to the flyback diode has the same properties, albeit with a fixed reverse voltage increase. Both the transistor voltages and the resistor or zener diode power ratings should be checked in this case.
An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a coil.
A relay is an electrically operated switch. It consists of a set of input terminals for a single or multiple control signals, and a set of operating contact terminals. The switch may have any number of contacts in multiple contact forms, such as make contacts, break contacts, or combinations thereof.
Voltage, also known as (electrical) potential difference, electric pressure, or electric tension is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to move a positive test charge from the first point to the second point. In the International System of Units (SI), the derived unit for voltage is the volt (V).
A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction.
The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is electrical conductance, measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm, while electrical conductance is measured in siemens (S).
In electromagnetism and electronics, electromotive force is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical transducers provide an emf by converting other forms of energy into electrical energy. Other electrical equipment also produce an emf, such as batteries, which convert chemical energy, and generators, which convert mechanical energy. This energy conversion is achieved by physical forces applying physical work on electric charges. However, electromotive force itself is not a physical force, and ISO/IEC standards have deprecated the term in favor of source voltage or source tension instead.
In electronics, negative resistance (NR) is a property of some electrical circuits and devices in which an increase in voltage across the device's terminals results in a decrease in electric current through it.
Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology. Whether a two-terminal "object" is an electrical component or an electrical network is a matter of perspective. This article will use "component" to refer to a two-terminal "object" that participates in the series/parallel networks.
In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.
The Ćuk converter is a type of buck-boost converter with low ripple current. A Ćuk converter can be seen as a combination of boost converter and buck converter, having one switching device and a mutual capacitor, to couple the energy.
A DC-to-DC converter is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.
A snubber is a device used to suppress a phenomenon such as voltage transients in electrical systems, pressure transients in fluid systems or excess force or rapid movement in mechanical systems.
A resistor–inductor circuit, or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source. It is one of the simplest analogue infinite impulse response electronic filters.
A boost converter or step-up converter is a DC-to-DC converter that increases voltage, while decreasing current, from its input (supply) to its output (load).
A buck converter or step-down converter is a DC-to-DC converter which decreases voltage, while increasing current, from its input (supply) to its output (load). It is a class of switched-mode power supply. Switching converters provide much greater power efficiency as DC-to-DC converters than linear regulators, which are simpler circuits that dissipate power as heat, but do not step up output current. The efficiency of buck converters can be very high, often over 90%, making them useful for tasks such as converting a computer's main supply voltage, which is usually 12 V, down to lower voltages needed by USB, DRAM and the CPU, which are usually 5, 3.3 or 1.8 V.
The buck–boost converter is a type of DC-to-DC converter that has an output voltage magnitude that is either greater than or less than the input voltage magnitude. It is equivalent to a flyback converter using a single inductor instead of a transformer. Two different topologies are called buck–boost converter. Both of them can produce a range of output voltages, ranging from much larger than the input voltage, down to almost zero.
Ripple in electronics is the residual periodic variation of the DC voltage within a power supply which has been derived from an alternating current (AC) source. This ripple is due to incomplete suppression of the alternating waveform after rectification. Ripple voltage originates as the output of a rectifier or from generation and commutation of DC power.
In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the condenser microphone. It is a passive electronic component with two terminals.
In electronics, an LED circuit or LED driver is an electrical circuit used to power a light-emitting diode (LED). The circuit must provide sufficient current to light the LED at the required brightness, but must limit the current to prevent damaging the LED. The voltage drop across a lit LED is approximately constant over a wide range of operating current; therefore, a small increase in applied voltage greatly increases the current. Datasheets may specify this drop as a "forward voltage" at a particular operating current. Very simple circuits are used for low-power indicator LEDs. More complex, current source circuits are required when driving high-power LEDs for illumination to achieve correct current regulation.
The single-ended primary-inductor converter (SEPIC) is a type of DC/DC converter that allows the electrical potential (voltage) at its output to be greater than, less than, or equal to that at its input. The output of the SEPIC is controlled by the duty cycle of the electronic switch (S1).