Bessel filter

Last updated

In electronics and signal processing, a Bessel filter is a type of analog linear filter with a maximally flat group delay (i.e., maximally linear phase response), which preserves the wave shape of filtered signals in the passband. [1] Bessel filters are often used in audio crossover systems.

Contents

The filter's name is a reference to German mathematician Friedrich Bessel (1784–1846), who developed the mathematical theory on which the filter is based. The filters are also called Bessel–Thomson filters in recognition of W. E. Thomson, who worked out how to apply Bessel functions to filter design in 1949. [2]

The Bessel filter is very similar to the Gaussian filter, and tends towards the same shape as filter order increases. [3] [4] While the time-domain step response of the Gaussian filter has zero overshoot, [5] the Bessel filter has a small amount of overshoot, [6] [7] but still much less than other common frequency-domain filters, such as Butterworth filters. It has been noted that the impulse response of Bessel–Thomson filters tends towards a Gaussian as the order of the filter is increased. [3]

Compared to finite-order approximations of the Gaussian filter, the Bessel filter has better shaping factor, flatter phase delay, and flatter group delay than a Gaussian of the same order, although the Gaussian has lower time delay and zero overshoot. [8]

The transfer function

A plot of the gain and group delay for a fourth-order low-pass Bessel filter. Note that the transition from the passband to the stopband is much slower than for other filters, but the group delay is practically constant in the passband. The Bessel filter maximizes the flatness of the group delay curve at zero frequency. Bessel4 GainDelay.png
A plot of the gain and group delay for a fourth-order low-pass Bessel filter. Note that the transition from the passband to the stopband is much slower than for other filters, but the group delay is practically constant in the passband. The Bessel filter maximizes the flatness of the group delay curve at zero frequency.

A Bessel low-pass filter is characterized by its transfer function: [9]

where is a reverse Bessel polynomial from which the filter gets its name and is a frequency chosen to give the desired cut-off frequency. The filter has a low-frequency group delay of . Since is indeterminate by the definition of reverse Bessel polynomials, but is a removable singularity, it is defined that .

Bessel polynomials

The roots of the third-order Bessel polynomial are the poles of the filter transfer function in the
s
{\displaystyle s}
plane, here plotted as crosses. Bessel 3rd-order poles.svg
The roots of the third-order Bessel polynomial are the poles of the filter transfer function in the plane, here plotted as crosses.

The transfer function of the Bessel filter is a rational function whose denominator is a reverse Bessel polynomial, such as the following:

The reverse Bessel polynomials are given by: [9]

where

Setting the cutoff attenuation

There is no standard set attenuation value for Bessel filters, however, −3.0103 dB is a common choice. Some applications may use a higher or lower attenuation, such as −1 dB or −20 dB. The attenuation is set by frequency scaling the denominator. This can be approximated by interpolating Bessel filter attenuation tables, or calculated precisely with Newton's method or the use of a root finding algorithm.

The denominator may be frequency scaled by using a scaling factor that will be referred to as . The frequency-scaled denominator of the Bessel transfer function may be rewritten for the case above and the example below as follows:

The task for modifying is to find an that results in the desired attenuation at 1 r/s for the normalized transfer function. Newton's method can be summarized to do this by its basic definition:

through successive iterations of until is the frequency that attenuates to the desired attenuation.

While the above summary may be concise and easily understood, the mechanics of obtaining an accurate derivative of the magnitude function along the axis may be problematic. Digital techniques may be used, but it is generally better to apply analytical techniques with continuous functions, if possible, so as to maximize accuracy. may be determined by either of the following methods.

Finding attenuation frequency with Newton's method

Newton's method requires a known magnitude value and derivative magnitude value for the for . To obtain these values, make the following alterations:

  1. Multiply by to obtain . This will eliminate complex numerical results when evaluating by removing the odd order terms in the polynomial.
  2. In , negate all terms of when is divisible by . That would be , , , and so on. We will call the modified function , and this modification will allow the use of real numbers instead of complex numbers when evaluating the polynomial and its derivative. That is, we can now use the real in place of the complex
  3. Convert the desired attenuation in dB, , to an arithmetic attenuation value, , using . For example, −3.010 dB is 0.7071, −1 dB is 0.8913 and so on. This simplifies the derivative evaluation.
  4. Square the resulting arithmetic attenuation to correlate with the squaring of the function.
  5. Calculate the modified in Newton's method using the real value, . Always take the absolute value.
  6. Calculate the derivative the modified with respect to the real value, . Negate the derivative computation to account for the effects due to the modifications made to create . DO NOT take the absolute value of the derivative.

When steps 1) through 4) are complete, the expression involving Newton's method may be written:

using a real value for with no complex arithmetic needed. The movement of should be limited to prevent it from going negative early in the iterations for increased reliability. When complete, can used for the that can be used to scale the original transfer function denominator. The attenuation of the modified will then be virtually the exact desired value at 1 rad/sec. If performed properly, only a handful of iterations are needed to set the attenuation through a wide range of desired attenuation values for both small and very large order Bessel filters.

Finding attenuation frequency from the roots

Since does not contain any phase information, directly factoring the transfer function will not produce usable results. However, the transfer function may be modified by multiplying it with to eliminate all odd powers of , which in turn forces to be real at all frequencies, and then finding the frequency that result on the square of the desired attention.

  1. Multiply by to obtain .
  2. Convert the desired attenuation in dB, , to a squared arithmetic attenuation value, , by using .
  3. Find
  4. Find the roots of P(S) using a root finding algorithm.
  5. Of the set of roots from above, there will be one and only one positive imaginary root for a function such as Bessel filters that continuously attenuates as frequency increases. The imaginary value of this root will be frequency that results in the desired attenuation, .

For example, setting the example 3rd order Bessel filter to -20dB at a cutoff frequency of 1 rad/sec is performed as follows:

Example

Gain plot of the third-order Bessel low-pass filter, versus normalized frequency. Bessel 3rd-order gain.svg
Gain plot of the third-order Bessel low-pass filter, versus normalized frequency.
Group delay plot of the third-order Bessel low-pass filter, illustrating flat unit delay in the passband. Bessel 3rd-order delay.svg
Group delay plot of the third-order Bessel low-pass filter, illustrating flat unit delay in the passband.

The transfer function for a third-order (three-pole) Bessel low-pass filter with is

where the numerator has been chosen to give unity gain at zero frequency ().The roots of the denominator polynomial, the filter's poles, include a real pole at , and a complex-conjugate pair of poles at , plotted above.

The gain is then

The −3-dB point, where occurs at . This is conventionally called the cut-off frequency.

The phase is

The group delay is

The Taylor series expansion of the group delay is

Note that the two terms in and are zero, resulting in a very flat group delay at . This is the greatest number of terms that can be set to zero, since there are a total of four coefficients in the third-order Bessel polynomial, requiring four equations in order to be defined. One equation specifies that the gain be unity at and a second specifies that the gain be zero at , leaving two equations to specify two terms in the series expansion to be zero. This is a general property of the group delay for a Bessel filter of order : the first terms in the series expansion of the group delay will be zero, thus maximizing the flatness of the group delay at .

Digital

Although the bilinear transform is used to convert continuous-time (analog) filters to discrete-time (digital) infinite impulse response (IIR) filters with comparable frequency response, IIR filters obtained by the bilinear transformation do not have constant group delay. [10] Since the important characteristic of a Bessel filter is its maximally-flat group delay, the bilinear transform is inappropriate for converting an analog Bessel filter into a digital form.

The digital equivalent is the Thiran filter, also an all-pole low-pass filter with maximally-flat group delay, [11] [12] which can also be transformed into an allpass filter, to implement fractional delays. [13] [14]

See also

Related Research Articles

The bilinear transform is used in digital signal processing and discrete-time control theory to transform continuous-time system representations to discrete-time and vice versa.

Linear filters process time-varying input signals to produce output signals, subject to the constraint of linearity. In most cases these linear filters are also time invariant in which case they can be analyzed exactly using LTI system theory revealing their transfer functions in the frequency domain and their impulse responses in the time domain. Real-time implementations of such linear signal processing filters in the time domain are inevitably causal, an additional constraint on their transfer functions. An analog electronic circuit consisting only of linear components will necessarily fall in this category, as will comparable mechanical systems or digital signal processing systems containing only linear elements. Since linear time-invariant filters can be completely characterized by their response to sinusoids of different frequencies, they are sometimes known as frequency filters.

In engineering, a transfer function of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. It is widely used in electronic engineering tools like circuit simulators and control systems. In simple cases, this function can be represented as a two-dimensional graph of an independent scalar input versus the dependent scalar output. Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in electronics and control theory.

<span class="mw-page-title-main">Cutoff frequency</span> Frequency response boundary

In physics and electrical engineering, a cutoff frequency, corner frequency, or break frequency is a boundary in a system's frequency response at which energy flowing through the system begins to be reduced rather than passing through.

In signal processing, group delay and phase delay are two related ways of describing how a signal's frequency components are delayed in time when passing through a linear time-invariant (LTI) system. Phase delay describes the time shift of a sinusoidal component. Group delay describes the time shift of the envelope of a wave packet, a "pack" or "group" of oscillations centered around one frequency that travel together, formed for instance by multiplying a sine wave by an envelope.

A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter design. The filter is sometimes called a high-cut filter, or treble-cut filter in audio applications. A low-pass filter is the complement of a high-pass filter.

<span class="mw-page-title-main">Bode plot</span> Graph of the frequency response of a control system

In electrical engineering and control theory, a Bode plot is a graph of the frequency response of a system. It is usually a combination of a Bode magnitude plot, expressing the magnitude of the frequency response, and a Bode phase plot, expressing the phase shift.

<i>Q</i> factor Parameter describing the longevity of energy in a resonator relative to its resonant frequency

In physics and engineering, the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost in one radian of the cycle of oscillation. Q factor is alternatively defined as the ratio of a resonator's centre frequency to its bandwidth when subject to an oscillating driving force. These two definitions give numerically similar, but not identical, results. Higher Q indicates a lower rate of energy loss and the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.

Chebyshev filters are analog or digital filters that have a steeper roll-off than Butterworth filters, and have either passband ripple or stopband ripple. Chebyshev filters have the property that they minimize the error between the idealized and the actual filter characteristic over the operating frequency range of the filter, but they achieve this with ripples in the passband. This type of filter is named after Pafnuty Chebyshev because its mathematical characteristics are derived from Chebyshev polynomials. Type I Chebyshev filters are usually referred to as "Chebyshev filters", while type II filters are usually called "inverse Chebyshev filters". Because of the passband ripple inherent in Chebyshev filters, filters with a smoother response in the passband but a more irregular response in the stopband are preferred for certain applications.

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely.

<span class="mw-page-title-main">Butterworth filter</span> Type of signal processing filter

The Butterworth filter is a type of signal processing filter designed to have a frequency response that is as flat as possible in the passband. It is also referred to as a maximally flat magnitude filter. It was first described in 1930 by the British engineer and physicist Stephen Butterworth in his paper entitled "On the Theory of Filter Amplifiers".

An elliptic filter is a signal processing filter with equalized ripple (equiripple) behavior in both the passband and the stopband. The amount of ripple in each band is independently adjustable, and no other filter of equal order can have a faster transition in gain between the passband and the stopband, for the given values of ripple. Alternatively, one may give up the ability to adjust independently the passband and stopband ripple, and instead design a filter which is maximally insensitive to component variations.

<span class="mw-page-title-main">Optimum "L" filter</span>

The Optimum "L" filter was proposed by Athanasios Papoulis in 1958. It has the maximum roll off rate for a given filter order while maintaining a monotonic frequency response. It provides a compromise between the Butterworth filter which is monotonic but has a slower roll off and the Chebyshev filter which has a faster roll off but has ripple in either the passband or stopband. The filter design is based on Legendre polynomials which is the reason for its alternate name and the "L" in Optimum "L".

<span class="mw-page-title-main">Gaussian filter</span> Filter in electronics and signal processing

In electronics and signal processing, mainly in digital signal processing, a Gaussian filter is a filter whose impulse response is a Gaussian function. Gaussian filters have the properties of having no overshoot to a step function input while minimizing the rise and fall time. This behavior is closely connected to the fact that the Gaussian filter has the minimum possible group delay. A Gaussian filter will have the best combination of suppression of high frequencies while also minimizing spatial spread, being the critical point of the uncertainty principle. These properties are important in areas such as oscilloscopes and digital telecommunication systems.

In mathematics, the Bessel polynomials are an orthogonal sequence of polynomials. There are a number of different but closely related definitions. The definition favored by mathematicians is given by the series

In functional analysis, compactly supported wavelets derived from Legendre polynomials are termed Legendre wavelets or spherical harmonic wavelets. Legendre functions have widespread applications in which spherical coordinate system is appropriate. As with many wavelets there is no nice analytical formula for describing these harmonic spherical wavelets. The low-pass filter associated to Legendre multiresolution analysis is a finite impulse response (FIR) filter.

<span class="mw-page-title-main">Prototype filter</span> Template for electronic filter design

Prototype filters are electronic filter designs that are used as a template to produce a modified filter design for a particular application. They are an example of a nondimensionalised design from which the desired filter can be scaled or transformed. They are most often seen in regard to electronic filters and especially linear analogue passive filters. However, in principle, the method can be applied to any kind of linear filter or signal processing, including mechanical, acoustic and optical filters.

In signal processing, a filter is a device or process that removes some unwanted components or features from a signal. Filtering is a class of signal processing, the defining feature of filters being the complete or partial suppression of some aspect of the signal. Most often, this means removing some frequencies or frequency bands. However, filters do not exclusively act in the frequency domain; especially in the field of image processing many other targets for filtering exist. Correlations can be removed for certain frequency components and not for others without having to act in the frequency domain. Filters are widely used in electronics and telecommunication, in radio, television, audio recording, radar, control systems, music synthesis, image processing, computer graphics, and structural dynamics.

<span class="mw-page-title-main">RLC circuit</span> Resistor Inductor Capacitor Circuit

An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.

<span class="mw-page-title-main">Lattice delay network</span>

Lattice delay networks are an important subgroup of lattice networks. They are all-pass filters, so they have a flat amplitude response, but a phase response which varies linearly with frequency. All lattice circuits, regardless of their complexity, are based on the schematic shown below, which contains two series impedances, Za, and two shunt impedances, Zb. Although there is duplication of impedances in this arrangement, it offers great flexibility to the circuit designer so that, in addition to its use as delay network it can be configured to be a phase corrector, a dispersive network, an amplitude equalizer, or a low pass filter, according to the choice of components for the lattice elements.

References

  1. "Bessel Filter". 2013. Archived from the original on 2013-01-24. Retrieved 2022-05-14.
  2. Thomson, W. E. (November 1949). "Delay networks having maximally flat frequency characteristics" (PDF). Proceedings of the IEE - Part III: Radio and Communication Engineering. 96 (44): 487–490. doi:10.1049/pi-3.1949.0101.
  3. 1 2 Roberts, Stephen (2001). "Transient Response and Transforms: 3.1 Bessel-Thomson filters" (PDF).
  4. "comp.dsp | IIR Gaussian Transition filters". www.dsprelated.com. Retrieved 2022-05-14. An analog Bessel filter is an approximation to a Gaussian filter, and the approximation improves as the filter order increases.
  5. "Gaussian Filters". www.nuhertz.com. Archived from the original on 2020-01-11. Retrieved 2022-05-14.
  6. "How to choose a filter? (Butterworth, Chebyshev, Inverse Chebyshev, Bessel–Thomson)". www.etc.tuiasi.ro. Retrieved 2022-05-14.
  7. "Free Analog Filter Program". www.kecktaylor.com. Retrieved 2022-05-14. the Bessel filter has a small overshoot and the Gaussian filter has no overshoot.
  8. Paarmann, L. D. (2001). Design and Analysis of Analog Filters: A Signal Processing Perspective. Springer Science & Business Media. ISBN   9780792373735. the Bessel filter has slightly better Shaping Factor, flatter phase delay, and flatter group delay than that of a Gaussian filter of equal order. However, the Gaussian filter has less time delay, as noted by the unit impulse response peaks occurring sooner than they do for Bessel filters of equal order.
  9. 1 2 Bianchi, Giovanni; Sorrentino, Roberto (2007). Electronic filter simulation & design. McGraw–Hill Professional. pp. 31–43. ISBN   978-0-07-149467-0.
  10. Zhang, Xi (2008-07-01). "Design of maximally flat IIR filters with flat group delay responses". Signal Processing. 88 (7): 1792–1800. doi:10.1016/j.sigpro.2008.01.016. ISSN   0165-1684.
  11. Thiran, J.-P. (1971). "Recursive digital filters with maximally flat group delay". IEEE Transactions on Circuit Theory. 18 (6): 659–664. doi:10.1109/TCT.1971.1083363. ISSN   0018-9324.
  12. Madisetti, Vijay (1997). "Section 11.3.2.2 Classical IIR Filter Types". The Digital Signal Processing Handbook. CRC Press. p. 11-32. ISBN   9780849385728.
  13. Smith III, Julius O. (2015-05-22). "Thiran Allpass Interpolators". W3K Publishing. Retrieved 2022-05-14.
  14. Välimäki, Vesa (1995). Discrete-time modeling of acoustic tubes using fractional delay filters (PDF) (Thesis). Helsinki University of Technology.