M-derived filter

Last updated

Parts of this article or section rely on the reader's knowledge of the complex impedance representation of capacitors and inductors and on knowledge of the frequency domain representation of signals.

m-derived filters or m-type filters are a type of electronic filter designed using the image method. They were invented by Otto Zobel in the early 1920s. [1] This filter type was originally intended for use with telephone multiplexing and was an improvement on the existing constant k type filter. [2] The main problem being addressed was the need to achieve a better match of the filter into the terminating impedances. In general, all filters designed by the image method fail to give an exact match, but the m-type filter is a big improvement with suitable choice of the parameter m. The m-type filter section has a further advantage in that there is a rapid transition from the cut-off frequency of the passband to a pole of attenuation just inside the stopband. Despite these advantages, there is a drawback with m-type filters; at frequencies past the pole of attenuation, the response starts to rise again, and m-types have poor stopband rejection. For this reason, filters designed using m-type sections are often designed as composite filters with a mixture of k-type and m-type sections and different values of m at different points to get the optimum performance from both types. [3]

Contents

Midpoint impedance
The parameter m is given this symbol because of its association with midpoint impedance, a concept used by Zobel in his original treatment of the subject. Midpoint impedance arises in the following way. In this article and most modern textbooks, the starting point is the simple half-section, and more complex filters are built up from this. In Zobel's treatment and that of his contemporaries, the starting point is always the infinite ladder network. A "mid-series" section is derived by "cutting through the middle" of the series impedance Z and results in a T section. The image impedance ZiT is referred to as the mid-series image impedance. Similarly, a "mid-shunt" section is derived by cutting through the middle of the shunt admittance Y and results in a Π section with a mid-shunt image impedance. A "series m-derived section" is shorthand for "mid-series derived ladder type section". This makes it clear that the word series is referring to the ends of the T section being (half) a series component and not as is sometimes thought, because the additional component is in series with the shunt element. Similarly, "shunt m-derived section" is shorthand for "mid-shunt derived ladder type section". [4]

Background

Zobel patented an impedance matching network in 1920 [5] which, in essence, used the topology of what are now called m-type filters, but Zobel did not name them as such or analyse them by the image method. This pre-dated George Campbell's publication of his constant k-type design in 1922 on which the m-type filter is based. [6] Zobel published the image analysis theory of m-type filters in 1923. [7] Once popular, M-type filters and image parameter designed filters in general are now rarely designed, having been superseded by more advanced network synthesis methods. [8]

Derivation

m-derived series general filter half section M-Derived Series Filter Half-section.svg
m-derived series general filter half section
m-derived shunt low-pass filter half section.

C
=
L
R
0
2
{\displaystyle C={\frac {L}{R_{0}^{2}}}} M-Derived Shunt Low-pass Filter Half-section.svg
m-derived shunt low-pass filter half section.

The building block of m-derived filters, as with all image impedance filters, is the "L" network, called a half-section and composed of a series impedance Z, and a shunt admittance Y. The m-derived filter is a derivative of the constant k filter. The starting point of the design is the values of Z and Y derived from the constant k prototype and are given by

where k is the nominal impedance of the filter, or R0. The designer now multiplies Z and Y by an arbitrary constant m (0 < m < 1). There are two different kinds of m-derived section; series and shunt. To obtain the m-derived series half section, the designer determines the impedance that must be added to 1/mY to make the image impedance ZiT the same as the image impedance of the original constant k section. From the general formula for image impedance, the additional impedance required can be shown to be [9]

To obtain the m-derived shunt half section, an admittance is added to 1/mZ to make the image impedance Z the same as the image impedance of the original half section. The additional admittance required can be shown to be [10]

The general arrangements of these circuits are shown in the diagrams to the right along with a specific example of a low-pass section.

A consequence of this design is that the m-derived half section will match a k-type section on one side only. Also, an m-type section of one value of m will not match another m-type section of another value of m except on the sides which offer the Zi of the k-type. [11]

Operating frequency

For the low-pass half section shown, the cut-off frequency of the m-type is the same as the k-type and is given by

The pole of attenuation occurs at;

From this it is clear that smaller values of m will produce closer to the cut-off frequency and hence will have a sharper cut-off. Despite this cut-off, it also brings the unwanted stopband response of the m-type closer to the cut-off frequency, making it more difficult for this to be filtered with subsequent sections. The value of m chosen is usually a compromise between these conflicting requirements. There is also a practical limit to how small m can be made due to the inherent resistance of the inductors. This has the effect of causing the pole of attenuation to be less deep (that is, it is no longer a genuinely infinite pole) and the slope of cut-off to be less steep. This effect becomes more marked as is brought closer to , and there ceases to be any improvement in response with an m of about 0.2 or less. [11] [12] [13]

Image impedance

m-derived prototype shunt low-pass filter ZiTm image impedance for various values of m. Values below cut-off frequency only shown for clarity. M-Derived Low-pass Image Impedance.svg
m-derived prototype shunt low-pass filter ZiTm image impedance for various values of m. Values below cut-off frequency only shown for clarity.

The following expressions for image impedances are all referenced to the low-pass prototype section. They are scaled to the nominal impedance R0 = 1, and the frequencies in those expressions are all scaled to the cut-off frequency ωc = 1.

Series sections

The image impedances of the series section are given by [14]

and is the same as that of the constant k section

Shunt sections

The image impedances of the shunt section are given by [11]

and is the same as that of the constant k section

As with the k-type section, the image impedance of the m-type low-pass section is purely real below the cut-off frequency and purely imaginary above it. From the chart it can be seen that in the passband the closest impedance match to a constant pure resistance termination occurs at approximately m = 0.6. [14]

Transmission parameters

m-Derived low-pass filter transfer function for a single half-section M-Derived Low-pass Transfer Function (1 Half-section).svg
m-Derived low-pass filter transfer function for a single half-section

For an m-derived section in general the transmission parameters for a half-section are given by [14]

and for n half-sections

For the particular example of the low-pass L section, the transmission parameters solve differently in three frequency bands. [14]

For the transmission is lossless:

For the transmission parameters are

For the transmission parameters are

Prototype transformations

The plots shown of image impedance, attenuation and phase change are the plots of a low-pass prototype filter section. The prototype has a cut-off frequency of ωc = 1 rad/s and a nominal impedance R0 = 1 Ω. This is produced by a filter half-section where L = 1 henry and C = 1 farad. This prototype can be impedance scaled and frequency scaled to the desired values. The low-pass prototype can also be transformed into high-pass, band-pass or band-stop types by application of suitable frequency transformations. [15]

Cascading sections

Several L half-sections may be cascaded to form a composite filter. Like impedance must always face like in these combinations. There are therefore two circuits that can be formed with two identical L half-sections. Where ZiT faces ZiT, the section is called a Π section. Where Z faces Z the section formed is a T section. Further additions of half-sections to either of these forms a ladder network which may start and end with series or shunt elements. [16]

It should be born in mind that the characteristics of the filter predicted by the image method are only accurate if the section is terminated with its image impedance. This is usually not true of the sections at either end which are usually terminated with a fixed resistance. The further the section is from the end of the filter, the more accurate the prediction will become since the effects of the terminating impedances are masked by the intervening sections. It is usual to provide half half-sections at the ends of the filter with m = 0.6 as this value gives the flattest Zi in the passband and hence the best match in to a resistive termination. [17]

Image filter sections
 
Unbalanced
L Half sectionT SectionΠ Section
Image Filter L Half-section.svg
Image filter T Section.svg
Image filter Pi Section.svg
Ladder network
Image Filter Ladder Network (Unbalanced).svg
 
Balanced
C Half-sectionH SectionBox Section
Image Filter C Half-section.svg
Image Filter H Section.svg
Image Filter Box Section.svg
Ladder network
Image Filter Ladder Network (Balanced).svg
X Section (mid-T-Derived)X Section (mid-Π-Derived)
Image filter X Section.svg
Image filter X Section (Pi-Derived).svg
N.B.Textbooks and design drawings usually show the unbalanced implementations, but in telecoms it is often required to convert the design to the balanced implementation when used with balanced lines. edit

See also

Related Research Articles

Cutoff frequency Frequency response boundary

In physics and electrical engineering, a cutoff frequency, corner frequency, or break frequency is a boundary in a system's frequency response at which energy flowing through the system begins to be reduced rather than passing through.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the change per unit length, but it is otherwise dimensionless. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

Chebyshev filters are analog or digital filters having a steeper roll-off than Butterworth filters, and have passband ripple or stopband ripple. Chebyshev filters have the property that they minimize the error between the idealized and the actual filter characteristic over the range of the filter, but with ripples in the passband. This type of filter is named after Pafnuty Chebyshev because its mathematical characteristics are derived from Chebyshev polynomials. Type I Chebyshev filters are usually referred to as "Chebyshev filters", while type II filters are usually called "inverse Chebyshev filters".

The Sallen–Key topology is an electronic filter topology used to implement second-order active filters that is particularly valued for its simplicity. It is a degenerate form of a voltage-controlled voltage-source (VCVS) filter topology.

Butterworth filter Type of signal processing filter

The Butterworth filter is a type of signal processing filter designed to have a frequency response that is as flat as possible in the passband. It is also referred to as a maximally flat magnitude filter. It was first described in 1930 by the British engineer and physicist Stephen Butterworth in his paper entitled "On the Theory of Filter Amplifiers".

Stub (electronics) Short electrical transmission line

In microwave and radio-frequency engineering, a stub or resonant stub is a length of transmission line or waveguide that is connected at one end only. The free end of the stub is either left open-circuit, or short-circuited. Neglecting transmission line losses, the input impedance of the stub is purely reactive; either capacitive or inductive, depending on the electrical length of the stub, and on whether it is open or short circuit. Stubs may thus function as capacitors, inductors and resonant circuits at radio frequencies.

Ripple in electronics is the residual periodic variation of the DC voltage within a power supply which has been derived from an alternating current (AC) source. This ripple is due to incomplete suppression of the alternating waveform after rectification. Ripple voltage originates as the output of a rectifier or from generation and commutation of DC power.

The telegrapher's equations are a pair of coupled, linear partial differential equations that describe the voltage and current on an electrical transmission line with distance and time. The equations come from Oliver Heaviside who developed the transmission line model starting with an August 1876 paper, On the Extra Current. The model demonstrates that the electromagnetic waves can be reflected on the wire, and that wave patterns can form along the line.

Electronic filter topology Electronic filter circuits defined by component connection

Electronic filter topology defines electronic filter circuits without taking note of the values of the components used but only the manner in which those components are connected.

Zobel network

Zobel networks are a type of filter section based on the image-impedance design principle. They are named after Otto Zobel of Bell Labs, who published a much-referenced paper on image filters in 1923. The distinguishing feature of Zobel networks is that the input impedance is fixed in the design independently of the transfer function. This characteristic is achieved at the expense of a much higher component count compared to other types of filter sections. The impedance would normally be specified to be constant and purely resistive. For this reason, Zobel networks are also known as constant resistance networks. However, any impedance achievable with discrete components is possible.

Image impedance is a concept used in electronic network design and analysis and most especially in filter design. The term image impedance applies to the impedance seen looking into a port of a network. Usually a two-port network is implied but the concept can be extended to networks with more than two ports. The definition of image impedance for a two-port network is the impedance, Zi 1, seen looking into port 1 when port 2 is terminated with the image impedance, Zi 2, for port 2. In general, the image impedances of ports 1 and 2 will not be equal unless the network is symmetrical with respect to the ports.

Lattice phase equaliser

A lattice phase equaliser or lattice filter is an example of an all-pass filter. That is, the attenuation of the filter is constant at all frequencies but the relative phase between input and output varies with frequency. The lattice filter topology has the particular property of being a constant-resistance network and for this reason is often used in combination with other constant resistance filters such as bridge-T equalisers. The topology of a lattice filter, also called an X-section is identical to bridge topology. The lattice phase equaliser was invented by Otto Zobel. using a filter topology proposed by George Campbell.

Constant k filters, also k-type filters, are a type of electronic filter designed using the image method. They are the original and simplest filters produced by this methodology and consist of a ladder network of identical sections of passive components. Historically, they are the first filters that could approach the ideal filter frequency response to within any prescribed limit with the addition of a sufficient number of sections. However, they are rarely considered for a modern design, the principles behind them having been superseded by other methodologies which are more accurate in their prediction of filter response.

A composite image filter is an electronic filter consisting of multiple image filter sections of two or more different types.

Prototype filter Template for electronic filter design

Prototype filters are electronic filter designs that are used as a template to produce a modified filter design for a particular application. They are an example of a nondimensionalised design from which the desired filter can be scaled or transformed. They are most often seen in regard to electronic filters and especially linear analogue passive filters. However, in principle, the method can be applied to any kind of linear filter or signal processing, including mechanical, acoustic and optical filters.

mm'-type filters, also called double-m-derived filters, are a type of electronic filter designed using the image method. They were patented by Otto Zobel in 1932. Like the m-type filter from which it is derived, the mm'-type filter type was intended to provide an improved impedance match into the filter termination impedances and originally arose in connection with telephone frequency division multiplexing. The filter has a similar transfer function to the m-type, having the same advantage of rapid cut-off, but the input impedance remains much more nearly constant if suitable parameters are chosen. In fact, the cut-off performance is better for the mm'-type if like-for-like impedance matching are compared rather than like-for-like transfer function. It also has the same drawback of a rising response in the stopband as the m-type. However, its main disadvantage is its much increased complexity which is the chief reason its use never became widespread. It was only ever intended to be used as the end sections of composite filters, the rest of the filter being made up of other sections such as k-type and m-type sections.

General m<sub>n</sub>-type image filter

These filters are electrical wave filters designed using the image method. They are an invention of Otto Zobel at AT&T Corp. They are a generalisation of the m-type filter in that a transform is applied that modifies the transfer function while keeping the image impedance unchanged. For filters that have only one stopband there is no distinction with the m-type filter. However, for a filter that has multiple stopbands, there is the possibility that the form of the transfer function in each stopband can be different. For instance, it may be required to filter one band with the sharpest possible cut-off, but in another to minimise phase distortion while still achieving some attenuation. If the form is identical at each transition from passband to stopband the filter will be the same as an m-type filter. If they are different, then the general case described here pertains.

Primary line constants Parameters of transmission lines

The primary line constants are parameters that describe the characteristics of conductive transmission lines, such as pairs of copper wires, in terms of the physical electrical properties of the line. The primary line constants are only relevant to transmission lines and are to be contrasted with the secondary line constants, which can be derived from them, and are more generally applicable. The secondary line constants can be used, for instance, to compare the characteristics of a waveguide to a copper line, whereas the primary constants have no meaning for a waveguide.

RLC circuit Resistor Inductor Capacitor Circuit

An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.

T pad

The T pad is a specific type of attenuator circuit in electronics whereby the topology of the circuit is formed in the shape of the letter "T".

References

  1. Belevitch, V, "Summary of the history of circuit theory", Proceedings of the IRE, vol 50, Iss 5, pp.849, May 1962.
  2. Bray, J, Innovation and the Communications Revolution, p.62, Institute of Electrical Engineers, 2002 ISBN   0-85296-218-5.
  3. Zobel, pp. 16–19.
  4. Zobel, O J, Electrical wave filters, U.S. Patent 1,850,146 , pp. 2–3, filed 25 Nov 1930, issued 22 March 1932.
  5. Zobel, O J, Terminating network for filters, U.S. Patent 1,557,229 , filed 30 April 1920, issued 13 October 1925.
  6. Campbell, G A, "Physical Theory of the Electric Wave-Filter", Bell System Tech J, November 1922, vol 1, no 2, pp. 1–32.
  7. Zobel, O. J.,Theory and Design of Uniform and Composite Electric Wave Filters, Bell System Technical Journal, Vol. 2 (1923), pp. 1–46.
  8. Roberto Sorrentino, Electronic filter simulation & design, p. 57, McGraw-Hill Professional, 2007 ISBN   0-07-149467-7.
  9. Matthaei, p. 64.
  10. Matthaei, p.66.
  11. 1 2 3 Matthaei, p. 65.
  12. Bode, Hendrik W., Wave Filter, U.S. Patent 2,002,216 , p. 1 c. 1 ll.14–26, filed 7 June 1933, issued 21 May 1935.
  13. Alan Keith Walton, Network analysis and practice, pp. 197, 203, Cambridge University Press, 1987 ISBN   0-521-31903-X.
  14. 1 2 3 4 Matthaei, p. 63.
  15. Matthaei, pp. 60–61 (LPF), 412 (HPF), 438-439 (BPF).
  16. Redifon Radio Diary, 1970, pp. 45–48, William Collins Sons & Co, 1969.
  17. Matthaei, pp. 72–74.

Bibliography

  • Mathaei, Young, Jones Microwave Filters, Impedance-Matching Networks, and Coupling Structures McGraw-Hill 1964 (1980 edition is ISBN   0-89006-099-1).
  • For a simpler treatment of the analysis see,