15 Eunomia

Last updated

15 Eunomia
15 Eunomia VLT (2021), deconvolved.pdf
Discovery
Discovered by Annibale de Gasparis
Discovery site Naples Obs.
Discovery date29 July 1851
Designations
(15) Eunomia
Pronunciation /jˈnmiə/ [1]
Named after
Eunomia
Adjectives Eunomian /jˈnmiən/ [2]
Symbol Eunomia symbol (bold).svg (historical)
Orbital characteristics [3]
Epoch July 01, 2021
(JD 2459396.5, heliocentric)
Aphelion 3.14  AU (469 Gm)
Perihelion 2.15 AU (321 Gm)
2.644 AU (395 Gm)
Eccentricity 0.186
4.30  yr (1571 d)
206°
Inclination 11.75°
293°
99°
Physical characteristics
Dimensions(357 × 255 × 212) ± 15 km [4]
270±3 km [5]
268 km [4]
231.689 ± 2.234 km [3]
Flattening 0.47 [lower-alpha 1]
Mass (30.5±1.9)×1018 kg [5]
(31.8±0.3)×1018 kg [lower-alpha 2] [4]
Mean density
2.96±0.21 g/cm3 [5]
3.14±0.53 g/cm3 [4]
6.083 h (0.2535 d) [3]
0.187 [5]
0.25±4 geometric (0.84±0.02 BV, 0.45±0.02 UB) [3]
S-type asteroid [3]
7.9 [6] to 11.24
5.41 [3]
0.29″ to 0.085″

    15 Eunomia is a very large asteroid in the middle asteroid belt. It is the largest of the stony (S-type) asteroids, with 3 Juno as a close second. It is quite a massive asteroid, in 6th to 8th place (to within measurement uncertainties). It is the largest Eunomian asteroid, and is estimated to contain 1% of the mass of the asteroid belt. [7] [8]

    Contents

    Eunomia was discovered by Annibale de Gasparis on July 29, 1851, and named after Eunomia, one of the Horae (Hours), a personification of order and law in Greek mythology. Its historical symbol is a heart with a star on top; it is in the pipeline for Unicode 17.0 as U+1CEC8 𜻈 ( Eunomia symbol (fixed width).svg ). [9] [10]

    Characteristics

    As the largest S-type asteroid (with 3 Juno being a very close second), Eunomia has attracted a moderate amount of scientific attention.

    Eunomia appears to be an elongated but fairly regularly shaped body, with what appear to be four sides of differing curvature and noticeably different average compositions. [11] Its elongation led to the suggestion that Eunomia may be a binary object, but this has been refuted. [12] It is a retrograde rotator with its pole pointing towards ecliptic coordinates (β, λ) = (−65°, 2°) with a 10° uncertainty. [11] [12] This gives an axial tilt of about 165°.

    Like other true members of the family, its surface is composed of silicates and some nickel-iron, and is quite bright. Calcium-rich pyroxenes and olivine, along with nickel-iron metal, have been detected on Eunomia's surface. Spectroscopic studies suggest that Eunomia has regions with differing compositions: A larger region dominated by olivine, which is pyroxene-poor and metal-rich, and another somewhat smaller region on one hemisphere (the less pointed end) that is noticeably richer in pyroxene, [11] and has a generally basaltic composition. [13]

    This composition indicates that the parent body was likely subject to magmatic processes, and became at least partially differentiated under the influence of internal heating in the early period of the Solar System. The range of compositions of the remaining Eunomian asteroids, formed by a collision of the common parent body, is large enough to encompass all the surface variations on Eunomia itself. The majority of smaller Eunomian asteroids are more pyroxene rich than Eunomia's surface, and contain very few metallic (M-type) bodies.

    Altogether, these lines of evidence suggest that Eunomia is the central remnant of the parent body of the Eunomia family, which was stripped of most of its crustal material by the disrupting impact, but was perhaps not disrupted itself. However, there is uncertainty over Eunomia's internal structure and relationship to the parent body. Computer simulations of the collision [14] are more consistent with Eunomia being a re-accumulation of most of the fragments of a completely shattered parent body, yet Eunomia's quite high density would indicate that it is not a rubble pile after all. Whatever the case in this respect, it appears that any metallic core region, if present, has not been exposed.

    An older explanation of the compositional differences, that Eunomia is a mantle fragment of a far larger parent body (with a bit of crust on one end, and a bit of core on the other), appears to be ruled out by studies of the mass distribution of the entire Eunomia family. These indicate that the largest fragment (that is, Eunomia) has about 70% of the mass of the parent body, [15] which is consistent with Eunomia being a central remnant, with the crust and part of the mantle stripped off.

    These indications are also in accord with recent mass determinations which indicate that Eunomia's density is typical of mostly intact stony asteroids, and not the anomalously low "rubble pile" density of ~1 g/cm3 that had been reported earlier.

    Studies

    15 Eunomia was in study of asteroids using the Hubble FGS. [16] Asteroids studied include (63) Ausonia, (15) Eunomia, (43) Ariadne, (44) Nysa, and (624) Hektor. [16]

    Orbit

    The orbit of 15 Eunomia places it in a 7:16 mean-motion resonance with the planet Mars. Eunomia is used by the Minor Planet Center to calculate perturbations. [17] The computed Lyapunov time for this asteroid is 25,000 years, indicating that it occupies a chaotic orbit that will change randomly over time because of gravitational perturbations of the planets. [18]

    Eunomia has been observed occulting stars three times. It has a mean opposition magnitude of +8.5, [19] about equal to the mean brightness of Titan, and can reach +7.9 at a near perihelion opposition.

    Asteroid (50278) 2000 CZ12 passed about 0.00037  AU (55,000  km ; 34,000  mi ) from Eunomia on March 4, 2002. [20]

    See also

    Notes

    1. Flattening derived from the maximum aspect ratio (c/a): , where (c/a) = 0.53±0.02. [5]
    2. (15.97±0.15)×10−12 M

    Related Research Articles

    <span class="mw-page-title-main">16 Psyche</span> Metallic main-belt asteroid

    16 Psyche is a large M-type asteroid, which was discovered by the Italian astronomer Annibale de Gasparis, on 17 March 1852 and named after the Greek goddess Psyche. The prefix "16" signifies that it was the sixteenth minor planet in order of discovery. It is the largest and most massive of the M-type asteroids, and one of the dozen most massive asteroids. It has a mean diameter of approximately 220 kilometers (140 mi) and contains about one percent of the mass of the asteroid belt. It was thought to be the exposed core of a protoplanet, but recent observations cast doubt on that hypothesis. Psyche will be explored by NASA, with a spacecraft of the same name, marking the first time a manmade object will journey to a metallic asteroid, launched on 13 October 2023, with an expected arrival in 2029.

    <span class="mw-page-title-main">624 Hektor</span> Largest Jupiter trojan

    624 Hektor is the largest Jupiter trojan and the namesake of the Hektor family, with a highly elongated shape equivalent in volume to a sphere of approximately 225 to 250 kilometers diameter. It was discovered on 10 February 1907, by astronomer August Kopff at Heidelberg Observatory in southwest Germany, and named after the Trojan prince Hector, from Greek mythology. It has one small 12-kilometer sized satellite, Skamandrios, discovered in 2006.

    <span class="mw-page-title-main">10 Hygiea</span> Major asteroid

    10 Hygiea is a major asteroid located in the main asteroid belt. With a mean diameter of between 425 and 440 km and a mass estimated to be 3% of the total mass of the belt, it is the fourth-largest asteroid in the Solar System by both volume and mass, and is the largest of the C-type asteroids in classifications that use G type for 1 Ceres. It is very close to spherical, apparently because it had re-accreted after the disruptive impact that produced the large Hygiean family of asteroids.

    <span class="mw-page-title-main">18 Melpomene</span> Main-belt asteroid

    18 Melpomene is a large, bright main-belt asteroid that was discovered by J. R. Hind on 24 June 1852, and named after Melpomenē, the Muse of tragedy in Greek mythology. Its historical symbol was a dagger over a star; it is in the pipeline for Unicode 17.0 as U+1CECB 𜻋.

    <span class="mw-page-title-main">43 Ariadne</span> Main-belt asteroid

    43 Ariadne is a fairly large and bright main-belt asteroid. It is the second-largest member of the Flora asteroid family. It was discovered by N. R. Pogson on 15 April 1857 and named after the Greek heroine Ariadne.

    <span class="mw-page-title-main">44 Nysa</span> Main-belt asteroid

    44 Nysa is a large and very bright main-belt asteroid, and the brightest member of the Nysian asteroid family. It is classified as a rare class E asteroid and is probably the largest of this type.

    The Eunomia or Eunomian family is a large asteroid family of S-type asteroids named after the asteroid 15 Eunomia. It is the most prominent family in the intermediate asteroid belt and the 6th-largest family with nearly six thousand known members, or approximately 1.4% of all asteroids in the asteroid belt.

    <span class="mw-page-title-main">63 Ausonia</span> Main-belt asteroid

    63 Ausonia is a stony Vestian asteroid from the inner region of the asteroid belt, approximately 100 kilometers in diameter. It was discovered by Italian astronomer Annibale de Gasparis on 10 February 1861, from the Astronomical Observatory of Capodimonte, in Naples, Italy. The initial choice of name for the asteroid was "Italia", after Italy, but this was modified to Ausonia, an ancient classical name for the Italian region.

    <span class="mw-page-title-main">88 Thisbe</span> Main-belt asteroid

    88 Thisbe is the 13th largest main-belt asteroid. It was discovered by C. H. F. Peters on June 15, 1866, and named after Thisbe, heroine of a Roman fable. This asteroid is orbiting the Sun at a distance of 2.768 AU with a period of 4.60 years and an orbital eccentricity (ovalness) of 0.165. The orbital plane is inclined at an angle of 5.219° to the ecliptic.

    <span class="mw-page-title-main">110 Lydia</span> Main-belt asteroid

    110 Lydia is a large belt asteroid with an M-type spectrum, and thus may be metallic in composition, consisting primarily of nickel-iron. It was discovered by French astronomer Alphonse Borrelly on 19 April 1870 and was named for Lydia, the Asia Minor country populated by Phrygians. The Lydia family of asteroids is named after it.

    <span class="mw-page-title-main">115 Thyra</span> Main-belt asteroid

    115 Thyra is a fairly large and bright inner main-belt asteroid that was discovered by Canadian-American astronomer J. C. Watson on August 6, 1871 and was named for Thyra, the consort of King Gorm the Old of Denmark. Based upon its spectrum, it is categorized as a stony S-type asteroid.

    <span class="mw-page-title-main">704 Interamnia</span> Large asteroid in the asteroid belt

    704 Interamnia is a large F-type asteroid. With a mean diameter of around 330 kilometres, it is the fifth-largest asteroid, after Ceres, Vesta, Pallas and Hygiea. Its mean distance from the Sun is 3.067 AU. It was discovered on 2 October 1910 by Vincenzo Cerulli, and named after the Latin name for Teramo, Italy, where Cerulli worked. Its mass is probably between fifth and tenth highest in the asteroid belt, with a mass estimated to be 1.2% of the mass of the entire asteroid belt. Observations by the Very Large Telescope's SPHERE imager in 2017–2019, combined with occultation results, indicate that the shape of Interamnia may be consistent with hydrostatic equilibrium for a body of its density with a rotational period of 7.6 hours. This suggests that Interamnia may have formed as an equilibrium body, and that impacts changed its rotational period after it fully solidified.

    <span class="mw-page-title-main">Asteroid family</span> Asteroid population sharing similar proper orbital elements

    An asteroid family is a population of asteroids that share similar proper orbital elements, such as semimajor axis, eccentricity, and orbital inclination. The members of the families are thought to be fragments of past asteroid collisions. An asteroid family is a more specific term than asteroid group whose members, while sharing some broad orbital characteristics, may be otherwise unrelated to each other.

    <span class="nowrap">(55565) 2002 AW<sub>197</sub></span> Classical Kuiper belt object

    (55565) 2002 AW197 (provisional designation 2002 AW197) is a classical, non-resonant trans-Neptunian object from the Kuiper belt in the outermost region of the Solar System, also known as a cubewano. With a likely diameter of at least 600 kilometers (400 miles), it is approximately tied with 2002 MS4 and 2013 FY27 (to within measurement uncertainties) as the largest unnamed object in the Solar System. It was discovered at Palomar Observatory in 2002.

    <span class="mw-page-title-main">881 Athene</span> Stony background asteroid

    881 Athene is a stony background asteroid from the central region of the asteroid belt. It was discovered on 22 July 1917, by astronomer Max Wolf at the Heidelberg-Königstuhl State Observatory in southwest Germany. The likely elongated S/L-type asteroid has a rotation period of 13.9 hours and measures approximately 12 kilometers in diameter. It was named after Athena, the goddess of wisdom in Greek mythology.

    1313 Berna, provisional designation 1933 QG, is a background asteroid and synchronous binary system from the Eunomian region in the central asteroid belt, approximately 14 kilometers in diameter. It was discovered on 24 August 1933, by Belgian astronomer Sylvain Arend at the Uccle Observatory in Belgium. The assumed S-type asteroid has a longer-than average rotation period of 25.5 hours and is likely elongated in shape. It was named for the Swiss capital of Bern. The discovery of an 11-kilometer-sized companion was announced in February 2004.

    <span class="mw-page-title-main">1050 Meta</span> Stony, main-belt asteroid of the Eunomia family

    1050 Meta, provisional designation 1925 RC, is a stony Eunomia asteroid from the central regions of the asteroid belt, approximately 10 kilometers in diameter. It was discovered on 14 September 1925, by German astronomer Karl Reinmuth at the Heidelberg Observatory in southwest Germany. The meaning of the asteroids's name is unknown. The presumably S-type asteroid has a rotation period of 6.14 hours and possibly an elongated shape.

    9175 Graun, provisional designation 1990 OO2, is a stony Eunomian asteroid from the central region of the asteroid belt, approximately 10 kilometers in diameter. It was discovered on 29 July 1990, by American astronomer Henry E. Holt at Palomar Observatory in California, United States. The asteroid was later named for American author and amateur astronomer Ken Graun.

    <span class="mw-page-title-main">Fine Guidance Sensor (HST)</span> Hubble Space Telescope instrument system

    Fine Guidance Sensor (FGS) for the Hubble Space Telescope is a system of three instruments used for pointing the telescope in space, and also for astrometry and its related sciences. To enable aiming the telescope at a specific spot in the sky, each FGS combines optics and electronics. There are three Hubble FGS, and they have been upgraded over the lifetime of the telescope by crewed Space Shuttle missions. The instruments can support pointing of 2 milli-arc seconds. The three FGS are part of the Hubble Space Telescope's Pointing Control System, aka PCS. The FGS function in combination with the Hubble main computer and gyroscopes, with the FGS providing data to the computer as sensors which enables the HST to track astronomical targets.

    References

    1. Noah Webster (1884) A Practical Dictionary of the English Language
    2. "Eunomian" . Oxford English Dictionary (Online ed.). Oxford University Press.(Subscription or participating institution membership required.)
    3. 1 2 3 4 5 6 JPL data Retrieved 2021-09-29
    4. 1 2 3 4 Baer, James; Chesley, Steven R.; Matson, Robert D. (2011). "Astrometric Masses of 26 Asteroids and Observations on Asteroid Porosity". The Astronomical Journal. 141 (5): 143. Bibcode:2011AJ....141..143B. doi: 10.1088/0004-6256/141/5/143 . S2CID   121625885.
    5. 1 2 3 4 5 P. Vernazza et al. (2021) VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. Astronomy & Astrophysics 54, A56
    6. Donald H. Menzel & Jay M. Pasachoff (1983). A Field Guide to the Stars and Planets (2nd ed.). Boston, MA: Houghton Mifflin. pp.  391. ISBN   0-395-34835-8.
    7. Vitagliano, Aldo; Reiner M. Stoss (2006). "New mass determination of (15) Eunomia based on a very close encounter with (50278) 2000CZ12". Astronomy and Astrophysics. 455 (3): L29–L31. Bibcode:2006A&A...455L..29V. doi: 10.1051/0004-6361:20065760 .
    8. Pitjeva, E. V. (2005). "High-Precision Ephemerides of Planets – EPM and Determination of Some Astronomical Constants" (PDF). Solar System Research. 39 (3): 176–186. Bibcode:2005SoSyR..39..176P. doi:10.1007/s11208-005-0033-2. S2CID   120467483. Archived from the original (PDF) on 31 October 2008. Retrieved 18 November 2008. Eunomia 0.164E−11 solar masses; asteroid belt 15E−11 solar masses → 1.1%.
    9. Bala, Gavin Jared; Miller, Kirk (18 September 2023). "Unicode request for historical asteroid symbols" (PDF). unicode.org. Unicode. Retrieved 26 September 2023.
    10. Unicode. "Proposed New Characters: The Pipeline". unicode.org. The Unicode Consortium. Retrieved 6 November 2023.
    11. 1 2 3 Nathues, Andreas (2005). "Spectral study of the Eunomia asteroid family". Icarus. 175 (2): 452–463. doi:10.1016/j.icarus.2004.12.013.
    12. 1 2 Tanga, Paolo (2003). "Asteroid observations with the Hubble Space Telescope FGS". Astronomy & Astrophysics . 401 (2): 733–741. Bibcode:2003A&A...401..733T. doi: 10.1051/0004-6361:20030032 . S2CID   8977642.
    13. Reed, Kevin L.; Gaffey, Michael J.; Lebofsky, Larry A. (1997). "Shape and Albedo Variations of Asteroid 15 Eunomia". Icarus. 125 (2): 446. Bibcode:1997Icar..125..446R. doi:10.1006/icar.1996.5627.
    14. Michel, Patrick; Benz, Willy; Richardson, Derek C. (2004). "Catastrophic disruption of pre-shattered parent bodies". Icarus. 168 (2): 420–432. Bibcode:2004Icar..168..420M. doi:10.1016/J.ICARUS.2003.12.011. S2CID   18834098.
    15. Tanga, P.; Cellino, A.; Michel, P.; Zappalà, V.; Paolicchi, P.; Dell'Oro, A. (1999). "On the Size Distribution of Asteroid Families: The Role of Geometry". Icarus. 141 (1): 65–78. Bibcode:1999Icar..141...65T. doi:10.1006/icar.1999.6148.
    16. 1 2 Tanga, P.; Hestroffer, D.; Cellino, A.; Lattanzi, M.; Martino, M. Di; Zappalà, V. (1 April 2003). "Asteroid observations with the Hubble Space Telescope FGS". Astronomy & Astrophysics. 401 (2): 733–741. Bibcode:2003A&A...401..733T. doi: 10.1051/0004-6361:20030032 . ISSN   0004-6361.
    17. "Perturbing Bodies". Minor Planet Center . Retrieved 18 April 2013.
    18. Šidlichovský, M. (1999), Svoren, J.; Pittich, E. M.; Rickman, H. (eds.), "Resonances and chaos in the asteroid belt", Evolution and source regions of asteroids and comets : proceedings of the 173rd colloquium of the International Astronomical Union, held in Tatranska Lomnica, Slovak Republic, August 24–28, 1998, pp. 297–308, Bibcode:1999esra.conf..297S.
    19. The Brightest Asteroids Archived 2008-05-11 at the Wayback Machine
    20. "JPL Close-Approach Data: 50278 (2000 CZ12)". 31 May 2013. Retrieved 8 September 2013.