44 Nysa

Last updated

44 Nysa
44Nysa (Lightcurve Inversion).png
Lightcurve-based 3D-model of Nysa
Discovery
Discovered by H. Goldschmidt
Discovery date27 May 1857
Designations
(44) Nysa
Pronunciation /ˈnsə/ [1]
Named after
Nysa
1977 CE
Main belt (Nysa)
Adjectives Nysian /ˈnɪsiən/ [2] [3]
Orbital characteristics [4]
Epoch 2008-05-14 (JD  2454600.5)
Aphelion 2.78291235  AU (416.3  Gm)
Perihelion 2.06469721 AU (308.9 Gm)
2.42380478 AU (362.6 Gm)
Eccentricity 0.148158617 ± 5.7499e-08
3.77  yr
118.743236 ± 2.4281e-05°
Inclination 3.7028885 ± 6.2628e-06°
131.59519 ± 1.0657e-04°
342.52066 ± 1.0904e-04°
Physical characteristics
Dimensions113±10×67±10×65±12 km [5]
Mass (7.72 ± 3.92/1.52)×1017 kg [6]
Mean density
3.405 ± 1.727/0.672 g/cm3 [6] [lower-alpha 1]
6.421417 ± 0.000001 [7]
+58 ± 3° [7]
98 ± 2° [7]
0.44 ± 0.10 (vis.) [5]
0.19 ± 0.06 (rad.) [5]
E [7]
8.83 to 12.46
7.03 [4]
0.09" to 0.026"

    Nysa (minor planet designation: 44 Nysa) is a large and very bright main-belt asteroid, and the brightest member of the Nysian asteroid family. It is classified as a rare class E asteroid and is probably the largest of this type (though 55 Pandora is only slightly smaller).

    Contents

    Discovery

    It was discovered by Hermann Goldschmidt on May 27, 1857, and named after the mythical land of Nysa in Greek mythology.

    Physical properties

    In 2002 Kaasalainen et al. used 63 lightcurves from the Uppsala Asteroid Photometric Catalog (UAPC) to construct a shape model of 44 Nysa. The shape model is conical, which they interpreted as indicating the asteroid may actually be a contact binary. [7]

    In 2003, Tanga et al. published results obtained from the Fine Guidance Sensor on the Hubble Space Telescope in which high-precision interferometry was performed on Nysa with the goal of a more accurate shape determination. Due to Hubble's orbit around the Earth, hours-long photometry sessions, as are normally used to resolve the asteroid's shape, were not possible. Instead, the team used interferometry on the asteroid at the time in its rotation when it would have its longest axis perpendicular to the Earth. Ellipsoidal shape models were then fit to the resulting data to determine an estimate of the asteroid's shape. Both single and double ellipsoid models were fit to the data with both providing approximately the same goodness of fit; leaving the team unable to differentiate between a single elongated object and the contact binary model put forth by Kaasalainen et al. [8] An observation of an occultation by 44 Nysa of TYC 6273-01033-1 from the Dutch amateur astronomer Harrie Rutten showed a two-phase reappearance on March 20, 2012. This confirms the conical shape or the binary nature of Nysa.

    In December 2006, Shepard et al. performed three days of radar observations on Nysa with the Arecibo radio telescope. The asteroid was found to have a high radar polarization value (μc) of 0.50 ± 0.2, a radar albedo () of 0.19 ± 0.06, and a visual albedo (pv) of 0.44 ± 0.10. [5] The albedo measurements were based on a shape model worked out at Arecibo. The best fit shape model as measured by the Arecibo team has parameters a/b = 1.7 ± 0.1, a/c = 1.6–1.9, with an a-axis of 113 ± 10 km; this gives an effective diameter of 79 ± 10 km, which is in agreement with the HST study by Tanga et al. in 2003. [5] The data gathered also showed signs of significant concavity in Nysa's structure, but the dip in the radar curves is not pronounced enough to indicate bifurcation, calling into question whether or not Nysa really is a contact binary. [5]

    Nysa has so far been reported occulting a star three times.

    Studies

    44 Nysa was in a study of asteroids using the Hubble FGS. [9] Asteroids studied include 63 Ausonia, 15 Eunomia, 43 Ariadne, 44 Nysa, and 624 Hektor. [9]

    See also

    Notes

    1. Assuming a diameter of 75.66 ± 0.74 km.

    Related Research Articles

    <span class="mw-page-title-main">16 Psyche</span> Metallic main-belt asteroid

    16 Psyche is a large M-type asteroid, which was discovered by the Italian astronomer Annibale de Gasparis, on 17 March 1852 and named after the Greek goddess Psyche. The prefix "16" signifies that it was the sixteenth minor planet in order of discovery. It is the largest and most massive of the M-type asteroids, and one of the dozen most massive asteroids. It has a mean diameter of approximately 220 kilometers (140 mi) and contains about one percent of the mass of the asteroid belt. It was thought to be the exposed core of a protoplanet, but recent observations cast doubt on that hypothesis. Psyche will be explored by NASA, with a spacecraft of the same name, marking the first time a manmade object will journey to a metallic asteroid, launched on 13 October 2023, with an expected arrival in 2029.

    <span class="mw-page-title-main">624 Hektor</span> Largest Jupiter trojan

    624 Hektor is the largest Jupiter trojan and the namesake of the Hektor family, with a highly elongated shape equivalent in volume to a sphere of approximately 225 to 250 kilometers diameter. It was discovered on 10 February 1907, by astronomer August Kopff at Heidelberg Observatory in southwest Germany, and named after the Trojan prince Hector, from Greek mythology. It has one small 12-kilometer sized satellite, Skamandrios, discovered in 2006.

    <span class="mw-page-title-main">1620 Geographos</span> Asteroid

    1620 Geographos, provisional designation 1951 RA, is a highly elongated, stony asteroid, near-Earth object and potentially hazardous asteroid of the Apollo group, with a mean-diameter of approximately 2.5 km (1.6 mi). It was discovered on 14 September 1951, by astronomers Albert George Wilson and Rudolph Minkowski at the Palomar Observatory in California, United States. The asteroid was named in honor of the National Geographic Society.

    <span class="mw-page-title-main">M-type asteroid</span> Asteroid spectral type

    M-type asteroids are a spectral class of asteroids which appear to contain higher concentrations of metal phases than other asteroid classes, and are widely thought to be the source of iron meteorites.

    <span class="mw-page-title-main">2867 Šteins</span>

    2867 Šteins is an irregular, diamond-shaped background asteroid from the inner regions of the asteroid belt, approximately 5 kilometers in diameter. It was discovered on 4 November 1969 by Soviet astronomer Nikolai Chernykh at the Crimean Astrophysical Observatory in Nauchnij on the Crimean peninsula. In September 2008, ESA's spacecraft Rosetta flew by Šteins, making it one of few minor planets ever visited by a spacecraft. The bright E-type asteroid features 23 named craters and has a rotation period of 6.05 hours. It was named for Soviet Latvian astronomer Kārlis Šteins.

    <span class="mw-page-title-main">216 Kleopatra</span> M-type asteroid

    216 Kleopatra is a large M-type asteroid with a mean diameter of 120 kilometers and is noted for its elongate bone or dumbbell shape. It was discovered on 10 April 1880 by Austrian astronomer Johann Palisa at the Austrian Naval Pola Observatory, in what is now Pula, Croatia, and was named after Cleopatra, the famous Egyptian queen. It has two small minor-planet moons which were discovered in 2008 and later named Alexhelios and Cleoselene.

    <span class="mw-page-title-main">15 Eunomia</span> Main-belt asteroid

    Eunomia is a very large asteroid in the middle asteroid belt. It is the largest of the stony (S-type) asteroids, with 3 Juno as a close second. It is quite a massive asteroid, in 6th to 8th place. It is the largest Eunomian asteroid, and is estimated to contain 1% of the mass of the asteroid belt.

    <span class="mw-page-title-main">43 Ariadne</span> Main-belt asteroid

    Ariadne is a fairly large and bright main-belt asteroid. It is the second-largest member of the Flora asteroid family. It was discovered by N. R. Pogson on 15 April 1857 and named after the Greek heroine Ariadne.

    <span class="mw-page-title-main">63 Ausonia</span> Main-belt asteroid

    Ausonia is a stony Vestian asteroid from the inner region of the asteroid belt, approximately 100 kilometers in diameter. It was discovered by Italian astronomer Annibale de Gasparis on 10 February 1861, from the Astronomical Observatory of Capodimonte, in Naples, Italy. The initial choice of name for the asteroid was "Italia", after Italy, but this was modified to Ausonia, an ancient classical name for the Italian region.

    <span class="mw-page-title-main">107 Camilla</span> Asteroid with 2 moons

    Camilla is one of the largest asteroids from the outermost edge of the asteroid belt, approximately 250 kilometers in diameter. It is a member of the Sylvia family and located within the Cybele group. It was discovered on 17 November 1868, by English astronomer Norman Pogson at Madras Observatory, India, and named after Camilla, Queen of the Volsci in Roman mythology. The X-type asteroid is a rare trinary asteroid with two minor-planet moons discovered in 2001 and 2016, respectively. It is elongated in shape and has a short rotation period of 4.8 hours.

    <span class="mw-page-title-main">130 Elektra</span> Asteroid with 3 moons

    Elektra is a large outer main-belt asteroid and quadruple system with three minor-planet moons. It was discovered on 17 February 1873, by astronomer Christian Peters at Litchfield Observatory, New York, and named after Electra, an avenger in Greek mythology.

    <span class="mw-page-title-main">22 Kalliope</span> Main-belt asteroid

    Kalliope is a large M-type asteroid from the asteroid belt discovered by J. R. Hind on 16 November 1852. It is named after Calliope, the Greek Muse of epic poetry. It is orbited by a small moon named Linus.

    <span class="mw-page-title-main">182 Elsa</span>

    Elsa is a Massalia or background asteroid from the inner regions of the asteroid belt, approximately 44 kilometers in diameter. It was discovered on 7 February 1878, by Austrian astronomer Johann Palisa at the Austrian Naval Observatory in today's Croatia. The S-type asteroid has a very long rotation period of 80 hours and likely an elongated shape. The origin of its name is uncertain.

    <span class="mw-page-title-main">849 Ara</span>

    849 Ara is a large, metallic background asteroid, approximately 80 kilometers in diameter, that is located in the outer region of the asteroid belt. It was discovered on 9 February 1912, by Russian astronomer Sergey Belyavsky at the Simeiz Observatory on the Crimean peninsula. The M-type asteroid has a short rotation period of 4.1 hours and is likely elongated in shape. It was named after the American Relief Administration (ARA) for the help given during the Russian famine of 1921–22.

    <span class="mw-page-title-main">1089 Tama</span> Florian asteroid and synchronous binary system

    1089 Tama, provisional designation 1927 WB, is an elongated Florian asteroid and synchronous binary system from the inner regions of the asteroid belt, approximately 12 kilometers in diameter.

    <span class="mw-page-title-main">3752 Camillo</span>

    3752 Camillo is an inclined contact-binary asteroid, classified as near-Earth object of the Apollo group, approximately 2.3 kilometers in diameter. It was discovered on 15 August 1985, by astronomers Eleanor Helin and Maria Barucci using a 0.9-metre (35 in) telescope at the CERGA Observatory in Caussols, France. Lightcurve studies by Petr Pravec in 1998 suggest that the assumed S-type asteroid has an elongated shape and a longer-than average rotation period of 38 hours.

    <span class="mw-page-title-main">1493 Sigrid</span>

    1493 Sigrid, provisional designation 1938 QB, is a dark Nysian asteroid from the inner regions of the asteroid belt, approximately 24 kilometers in diameter. It was discovered on 26 August 1938, by Belgian astronomer Eugène Delporte at the Royal Observatory of Belgium in Uccle. It was named after Sigrid Strömgren, wife of astronomer Bengt Strömgren.

    <span class="mw-page-title-main">Fine Guidance Sensor (HST)</span> Hubble Space Telescope instrument system

    Fine Guidance Sensor (FGS) for the Hubble Space Telescope is a system of three instruments used for pointing the telescope in space, and also for astrometry and its related sciences. To enable aiming the telescope at a specific spot in the sky, each FGS combines optics and electronics. There are three Hubble FGS, and they have been upgraded over the lifetime of the telescope by crewed Space Shuttle missions. The instruments can support pointing of 2 milli-arc seconds. The three FGS are part of the Hubble Space Telescope's Pointing Control System, aka PCS. The FGS function in combination with the Hubble main computer and gyroscopes, with the FGS providing data to the computer as sensors which enables the HST to track astronomical targets.

    <span class="nowrap">(85990) 1999 JV<sub>6</sub></span> Asteroid

    (85990) 1999 JV6 (provisional designation 1999 JV6) is a sub-kilometer near-Earth asteroid and a potentially hazardous object of the Apollo group. It was discovered by astronomers of the LINEAR program at the Lincoln Laboratory's Experimental Test Site near Socorro, New Mexico. 1999 JV6 is a contact binary object consisting of two distinct lobes, as seen in radar images from various observatories including Arecibo and Goldstone in January 2015.

    References

    1. Noah Webster (1884) A Practical Dictionary of the English Language
    2. Katz (2004) The complete elegies of Sextus Propertius
    3. Stein (2004) Persephone Unveiled
    4. 1 2 "44 Nysa". JPL Small-Body Database . Jet Propulsion Laboratory. SPK-ID:  44.
    5. 1 2 3 4 5 6 Shepard, M.; et al. (May 2008). "Radar observations of E-class Asteroids 44 Nysa and 434 Hungaria". Icarus . 195 (1): 220–225. Bibcode:2008Icar..195..220S. doi:10.1016/j.icarus.2007.12.018.
    6. 1 2 Fienga, A.; Avdellidou, C.; Hanuš, J. (February 2020). "Asteroid masses obtained with INPOP planetary ephemerides". Monthly Notices of the Royal Astronomical Society. 492 (1). doi: 10.1093/mnras/stz3407 .
    7. 1 2 3 4 5 Kaasalainen, M.; Torppa, J.; Piironen, J. (March 2002). "Binary structures among large asteroids". Astronomy and Astrophysics . 383 (3): L19–L22. Bibcode:2002A&A...383L..19K. doi: 10.1051/0004-6361:20020015 .
    8. Tanga, P.; et al. (April 2003). "Asteroid observations with the Hubble Space Telescope. II. Duplicity search and size measurements for 6 asteroids". Astronomy and Astrophysics . 401 (2): 733–741. Bibcode:2003A&A...401..733T. doi: 10.1051/0004-6361:20030032 .
    9. 1 2 Tanga, P.; Hestroffer, D.; Cellino, A.; Lattanzi, M.; Martino, M. Di; Zappalà, V. (1 April 2003). "Asteroid observations with the Hubble Space Telescope FGS". Astronomy & Astrophysics. 401 (2): 733–741. Bibcode:2003A&A...401..733T. doi: 10.1051/0004-6361:20030032 . ISSN   0004-6361.

    Further reading