Ecliptic coordinate system

Last updated

In astronomy, the ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations [1] of Solar System objects. Because most planets (except Mercury) and many small Solar System bodies have orbits with only slight inclinations to the ecliptic, using it as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth, its primary direction is towards the March equinox, and it has a right-hand convention. It may be implemented in spherical or rectangular coordinates. [2]

Contents

Earth-centered ecliptic coordinates as seen from outside the celestial sphere.
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Ecliptic longitude; measured along the ecliptic from the March equinox
Ecliptic latitude; measured perpendicular to the ecliptic
Celestial equator
A full globe is shown here, although high-latitude coordinates are seldom seen except for certain comets and asteroids. Ecliptic grid globe.png
Earth-centered ecliptic coordinates as seen from outside the celestial sphere.
  Ecliptic longitude; measured along the ecliptic from the March equinox
  Ecliptic latitude; measured perpendicular to the ecliptic
A full globe is shown here, although high-latitude coordinates are seldom seen except for certain comets and asteroids.

Primary direction

The apparent motion of the Sun along the ecliptic (red) as seen on the inside of the celestial sphere. Ecliptic coordinates appear in (red). The celestial equator (blue) and the equatorial coordinates (blue), being inclined to the ecliptic, appear to wobble as the Sun advances. Ecliptic vs equator small.gif
The apparent motion of the Sun along the ecliptic (red) as seen on the inside of the celestial sphere. Ecliptic coordinates appear in (red). The celestial equator (blue) and the equatorial coordinates (blue), being inclined to the ecliptic, appear to wobble as the Sun advances.

The celestial equator and the ecliptic are slowly moving due to perturbing forces on the Earth, therefore the orientation of the primary direction, their intersection at the March equinox, is not quite fixed. A slow motion of Earth's axis, precession, causes a slow, continuous turning of the coordinate system westward about the poles of the ecliptic, completing one circuit in about 26,000 years. Superimposed on this is a smaller motion of the ecliptic, and a small oscillation of the Earth's axis, nutation. [3] [4]

In order to reference a coordinate system which can be considered as fixed in space, these motions require specification of the equinox of a particular date, known as an epoch, when giving a position in ecliptic coordinates. The three most commonly used are:

Mean equinox of a standard epoch
(usually the J2000.0 epoch, but may include B1950.0, B1900.0, etc.) is a fixed standard direction, allowing positions established at various dates to be compared directly.
Mean equinox of date
is the intersection of the ecliptic of "date" (that is, the ecliptic in its position at "date") with the mean equator (that is, the equator rotated by precession to its position at "date", but free from the small periodic oscillations of nutation). Commonly used in planetary orbit calculation.
True equinox of date
is the intersection of the ecliptic of "date" with the true equator (that is, the mean equator plus nutation). This is the actual intersection of the two planes at any particular moment, with all motions accounted for.

A position in the ecliptic coordinate system is thus typically specified true equinox and ecliptic of date, mean equinox and ecliptic of J2000.0, or similar. Note that there is no "mean ecliptic", as the ecliptic is not subject to small periodic oscillations. [5]

Spherical coordinates

Summary of notation for ecliptic coordinates [6]
SphericalRectangular
LongitudeLatitudeDistance
GeocentricλβΔ
Heliocentriclbrx, y, z [note 1]
  1. Occasional use; x, y, z are usually reserved for equatorial coordinates.
Ecliptic longitude
Ecliptic longitude or celestial longitude (symbols: heliocentric l, geocentric λ) measures the angular distance of an object along the ecliptic from the primary direction. Like right ascension in the equatorial coordinate system, the primary direction (0° ecliptic longitude) points from the Earth towards the Sun at the March equinox. Because it is a right-handed system, ecliptic longitude is measured positive eastwards in the fundamental plane (the ecliptic) from 0° to 360°. Because of axial precession, the ecliptic longitude of most "fixed stars" (referred to the equinox of date) increases by about 50.3 arcseconds per year, or 83.8 arcminutes per century, the speed of general precession. [7] [8] However, for stars near the ecliptic poles, the rate of change of ecliptic longitude is dominated by the slight movement of the ecliptic (that is, of the plane of the Earth's orbit), so the rate of change may be anything from minus infinity to plus infinity depending on the exact position of the star.
Ecliptic latitude
Ecliptic latitude or celestial latitude (symbols: heliocentric b, geocentric β), measures the angular distance of an object from the ecliptic towards the north (positive) or south (negative) ecliptic pole. For example, the north ecliptic pole has a celestial latitude of +90°. Ecliptic latitude for "fixed stars" is not affected by precession.
Distance
Distance is also necessary for a complete spherical position (symbols: heliocentric r, geocentric Δ). Different distance units are used for different objects. Within the Solar System, astronomical units are used, and for objects near the Earth, Earth radii or kilometers are used.

Historical use

From antiquity through the 18th century, ecliptic longitude was commonly measured using twelve zodiacal signs, each of 30° longitude, a practice that continues in modern astrology. The signs approximately corresponded to the constellations crossed by the ecliptic. Longitudes were specified in signs, degrees, minutes, and seconds. For example, a longitude of ♌ 19°55′58″ is 19.933° east of the start of the sign Leo. Since Leo begins 120° from the March equinox, the longitude in modern form is 139°55′58″. [9]

In China, ecliptic longitude is measured using 24  Solar terms, each of 15° longitude, and are used by Chinese lunisolar calendars to stay synchronized with the seasons, which is crucial for agrarian societies.

Rectangular coordinates

Heliocentric ecliptic coordinates. The origin is the Sun's center, the plane of reference is the ecliptic plane, and the primary direction (the x-axis) is the March equinox. A right-handed rule specifies a y-axis 90deg to the east on the fundamental plane. The z-axis points toward the north ecliptic pole. The reference frame is relatively stationary, aligned with the March equinox. Heliocentric rectangular ecliptic.png
Heliocentric ecliptic coordinates. The origin is the Sun's center, the plane of reference is the ecliptic plane, and the primary direction (the x-axis) is the March equinox. A right-handed rule specifies a y-axis 90° to the east on the fundamental plane. The z-axis points toward the north ecliptic pole. The reference frame is relatively stationary, aligned with the March equinox.

A rectangular variant of ecliptic coordinates is often used in orbital calculations and simulations. It has its origin at the center of the Sun (or at the barycenter of the Solar System), its fundamental plane on the ecliptic plane, and the x-axis toward the March equinox. The coordinates have a right-handed convention, that is, if one extends their right thumb upward, it simulates the z-axis, their extended index finger the x-axis, and the curl of the other fingers points generally in the direction of the y-axis. [10]

These rectangular coordinates are related to the corresponding spherical coordinates by

Conversion between celestial coordinate systems

Converting Cartesian vectors

Conversion from ecliptic coordinates to equatorial coordinates

[11]

Conversion from equatorial coordinates to ecliptic coordinates

where ε is the obliquity of the ecliptic.

See also

Notes and references

  1. Cunningham, Clifford J. (June 1985). "Asteroid Pole Positions: A Survey". The Minor Planet Bulletin. 12: 13–16. Bibcode:1985MPBu...12...13C.
  2. Nautical Almanac Office, U.S. Naval Observatory; H.M. Nautical Almanac Office, Royal Greenwich Observatory (1961). Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac. H.M. Stationery Office, London (reprint 1974). pp.  24–27.
  3. Explanatory Supplement (1961), pp. 20, 28
  4. U.S. Naval Observatory, Nautical Almanac Office (1992). P. Kenneth Seidelmann (ed.). Explanatory Supplement to the Astronomical Almanac. University Science Books, Mill Valley, CA (reprint 2005). pp. 11–13. ISBN   1-891389-45-9.
  5. Meeus, Jean (1991). Astronomical Algorithms. Willmann-Bell, Inc., Richmond, VA. p. 137. ISBN   0-943396-35-2.
  6. Explanatory Supplement (1961), sec. 1G
  7. N. Capitaine; P.T. Wallace; J. Chapront (2003). "Expressions for IAU 2000 precession quantities" (PDF). Astronomy & Astrophysics. 412 (2): 581. Bibcode:2003A&A...412..567C. doi: 10.1051/0004-6361:20031539 . Archived (PDF) from the original on 2012-03-25.
  8. J.H. Lieske et al. (1977), "Expressions for the Precession Quantities Based upon the IAU (1976) System of Astronomical Constants". Astronomy & Astrophysics58, pp. 1-16
  9. Leadbetter, Charles (1742). A Compleat System of Astronomy. J. Wilcox, London. p.  94.; numerous examples of this notation appear throughout the book.
  10. Explanatory Supplement (1961), pp. 20, 27
  11. Explanatory Supplement (1992), pp. 555-558

Related Research Articles

<span class="mw-page-title-main">Declination</span> Astronomical coordinate analogous to latitude

In astronomy, declination is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. The declination angle is measured north (positive) or south (negative) of the celestial equator, along the hour circle passing through the point in question.

<span class="mw-page-title-main">Ecliptic</span> Apparent path of the Sun on the celestial sphere

The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system.

A solar equinox is a moment in time when the Sun crosses the Earth's equator, which is to say, appears directly above the equator, rather than north or south of the equator. On the day of the equinox, the Sun appears to rise "due east" and set "due west". This occurs twice each year, around 20 March and 23 September.

<span class="mw-page-title-main">Latitude</span> Geographic coordinate specifying north–south position

In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.

<span class="mw-page-title-main">Right ascension</span> Astronomical equivalent of longitude

Right ascension is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the point in question above the Earth. When paired with declination, these astronomical coordinates specify the location of a point on the celestial sphere in the equatorial coordinate system.

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.

<span class="mw-page-title-main">Astronomical coordinate systems</span> System for specifying positions of celestial objects

In astronomy, coordinate systems are used for specifying positions of celestial objects relative to a given reference frame, based on physical reference points available to a situated observer. Coordinate systems in astronomy can specify an object's position in three-dimensional space or plot merely its direction on a celestial sphere, if the object's distance is unknown or trivial.

<span class="mw-page-title-main">Equatorial coordinate system</span> Celestial coordinate system used to specify the positions of celestial objects

The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's equator onto the celestial sphere, a primary direction towards the March equinox, and a right-handed convention.

<span class="mw-page-title-main">Galactic coordinate system</span> Celestial coordinate system in spherical coordinates, with the Sun as its center

The galactic coordinate system is a celestial coordinate system in spherical coordinates, with the Sun as its center, the primary direction aligned with the approximate center of the Milky Way Galaxy, and the fundamental plane parallel to an approximation of the galactic plane but offset to its north. It uses the right-handed convention, meaning that coordinates are positive toward the north and toward the east in the fundamental plane.

<span class="mw-page-title-main">Axial precession</span> Change of rotational axis in an astronomical body

In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In particular, axial precession can refer to the gradual shift in the orientation of Earth's axis of rotation in a cycle of approximately 26,000 years. This is similar to the precession of a spinning top, with the axis tracing out a pair of cones joined at their apices. The term "precession" typically refers only to this largest part of the motion; other changes in the alignment of Earth's axis—nutation and polar motion—are much smaller in magnitude.

Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics.

In astronomy, an epoch or reference epoch is a moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a celestial body, as they are subject to perturbations and vary with time. These time-varying astronomical quantities might include, for example, the mean longitude or mean anomaly of a body, the node of its orbit relative to a reference plane, the direction of the apogee or aphelion of its orbit, or the size of the major axis of its orbit.

<span class="mw-page-title-main">Supergalactic coordinate system</span>

The supergalactic plane is part of a reference frame for the supercluster of galaxies that contains the Milky Way galaxy.

<span class="mw-page-title-main">Longitude of the periapsis</span>

In celestial mechanics, the longitude of the periapsis, also called longitude of the pericenter, of an orbiting body is the longitude at which the periapsis would occur if the body's orbit inclination were zero. It is usually denoted ϖ.

In astrology, the Equatorial Ascendant, or the East Point, is the sign and degree rising over the Eastern Horizon at the Earth's equator at any given time. In the celestial sphere it corresponds to the intersection of the ecliptic with a great circle containing the celestial poles and the East point of the horizon.

<span class="mw-page-title-main">Earth-centered, Earth-fixed coordinate system</span> 3-D coordinate system centered on the Earth

The Earth-centered, Earth-fixed coordinate system, also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth as X, Y, and Z measurements from its center of mass. Its most common use is in tracking the orbits of satellites and in satellite navigation systems for measuring locations on the surface of the Earth, but it is also used in applications such as tracking crustal motion.

<span class="mw-page-title-main">Earth-centered inertial</span> Coordinate frames

Earth-centered inertial (ECI) coordinate frames have their origins at the center of mass of Earth and are fixed with respect to the stars. "I" in "ECI" stands for inertial, in contrast to the "Earth-centered – Earth-fixed" (ECEF) frames, which remains fixed with respect to Earth's surface in its rotation, and then rotates with respect to stars.

<span class="mw-page-title-main">Geodetic coordinates</span> Geographic coordinate system

Geodetic coordinates are a type of curvilinear orthogonal coordinate system used in geodesy based on a reference ellipsoid. They include geodetic latitude (north/south) ϕ, longitude (east/west) λ, and ellipsoidal heighth. The triad is also known as Earth ellipsoidal coordinates.

<span class="mw-page-title-main">Position of the Sun</span> Calculating the Suns location in the sky at a given time and place

The position of the Sun in the sky is a function of both the time and the geographic location of observation on Earth's surface. As Earth orbits the Sun over the course of a year, the Sun appears to move with respect to the fixed stars on the celestial sphere, along a circular path called the ecliptic.

Astronomical nutation is a phenomenon which causes the orientation of the axis of rotation of a spinning astronomical object to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object. Although they are caused by the same effect operating over different timescales, astronomers usually make a distinction between precession, which is a steady long-term change in the axis of rotation, and nutation, which is the combined effect of similar shorter-term variations.