This article needs additional citations for verification .(September 2024) |
In astronomy, a planet's elongation is the angular separation between the Sun and the planet, with Earth as the reference point. [1]
The greatest elongation is the maximum angular separation. Astronomical tables and websites, such as Heavens-Above, forecast when and where the planets reach their next maximum elongations.
Sometimes elongation may instead refer to the angular distance of the Moon relative Earth or the natural satellite of another planet from its central planet, for instance the angular distance of Io from Jupiter.
A quadrature occurs when the position of a body (moon or planet) is such that its elongation is 90° or 270°; i.e. the body-earth-sun angle is 90°.
The greatest elongation of a given inferior planet occurs when this planet's position, in its orbital path around the Sun, is at tangent to the observer on Earth. Since an inferior planet is well within the area of Earth's orbit around the Sun, observation of its elongation should not pose that much a challenge (compared to deep-sky objects, for example). When a planet is at its greatest elongation, it appears farthest from the Sun as viewed from Earth, so its apparition is also best at that point.
When an inferior planet is visible after sunset, it is near its greatest eastern elongation. When an inferior planet is visible before sunrise, it is near its greatest western elongation. The angle of the maximum elongation (east or west) for Mercury is between 18° and 28°, while that for Venus is between 45° and 47°. These values vary because the planetary orbits are elliptical rather than perfectly circular. Another factor contributing to this inconsistency is orbital inclination, in which each planet's orbital plane is slightly tilted relative to a reference plane, like the ecliptic and invariable planes.
Greatest elongations of a planet happen periodically, with a greatest eastern elongation followed by a greatest western elongation, and vice versa. The period depends on the relative angular velocity of Earth and the planet, as seen from the Sun. The time it takes to complete this period is the synodic period of the planet.
Let T be the period (for example the time between two greatest eastern elongations), ω be the relative angular velocity, ωe Earth's angular velocity and ωp the planet's angular velocity. Then
where Te and Tp are Earth's and the planet's years (i.e. periods of revolution around the Sun, called sidereal periods).
For example, Venus's year (sidereal period) is 225 days, and Earth's is 365 days. Thus Venus's synodic period, which gives the time between every two eastern greatest elongations, is 584 days; this also applies to the western counterparts.
These values are approximate, because (as mentioned above) the planets do not have perfectly circular, coplanar orbits. When a planet is closer to the Sun it moves faster than when it is further away, so exact determination of the date and time of greatest elongation requires a much more complicated analysis of orbital mechanics.
Superior planets, dwarf planets and asteroids undergo a different cycle. After conjunction, such an object's elongation continues to increase until it approaches a maximum value larger than 90° (impossible with inferior planets) which is known as opposition and can also be examined as a heliocentric conjunction with Earth. This is archetypally very near 180°. As seen by an observer on the superior planet at opposition, the Earth appears at conjunction with the Sun. Technically, the point of opposition can be different from the time and point of maximum elongation. Opposition is defined as the moment when the apparent ecliptic longitude of any such object versus the Sun (seen from earth) differs by (is) 180°; it thus ignores how much the object differs from the plane of the Earth's orbit. For example, Pluto, whose orbit is highly inclined to the essentially matching plane of the planets, has maximum elongation much less than 180° at opposition. The six-word term "maximum apparent elongation from the sun" provides a fuller definition of elongation.
All superior planets are most conspicuous at their oppositions because they are near, or at, their closest to Earth and are also above the horizon all night. The variation in magnitude caused by changes in elongation are greater the closer the planet's orbit is to the Earth's. Mars' magnitude in particular changes with elongation: it can be as low as +1.8 when in conjunction near aphelion but at a rare favourable opposition it is as high as −2.9, which translates to seventy-five times brighter than its minimum brightness. As one moves further out, the difference in magnitude that correlates to the difference in elongation gradually falls. At opposition, the brightness of Jupiter from Earth ranges 3.3-fold; whereas that of Uranus – the most distant Solar System body visible to the naked eye – ranges by 1.7 times.
Since asteroids travel in an orbit not much larger than the Earth's, their magnitude can vary greatly depending on elongation. More than a dozen objects in the asteroid belt can be seen with 10×50 binoculars at an average opposition, but of these only Ceres and Vesta are always above the binocular limit of +9.5 when the objects at their worst points in their orbital opposition (smallest elongations).
Sometimes elongation may instead refer to the angular distance of a moon of another planet from its central planet, for instance the angular distance of Io from Jupiter. Here we can also talk about greatest eastern elongation and greatest western elongation. In the case of the moons of Uranus, studies often deal with greatest northern elongation and greatest southern elongation instead, due to the very high inclination of Uranus' axis of rotation.
Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.
In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.
In astronomy, a conjunction occurs when two astronomical objects or spacecraft appear to be close to each other in the sky. This means they have either the same right ascension or the same ecliptic longitude, usually as observed from Earth.
The orbital period is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars. It may also refer to the time it takes a satellite orbiting a planet or moon to complete one orbit.
A gravity assist, gravity assist maneuver, swing-by, or generally a gravitational slingshot in orbital mechanics, is a type of spaceflight flyby which makes use of the relative movement and gravity of a planet or other astronomical object to alter the path and speed of a spacecraft, typically to save propellant and reduce expense.
In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.
In astronomy, an extraterrestrial sky is a view of outer space from the surface of an astronomical body other than Earth.
In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.
The angular diameter, angular size, apparent diameter, or apparent size is an angular distance describing how large a sphere or circle appears from a given point of view. In the vision sciences, it is called the visual angle, and in optics, it is the angular aperture. The angular diameter can alternatively be thought of as the angular displacement through which an eye or camera must rotate to look from one side of an apparent circle to the opposite side. Humans can resolve with their naked eyes diameters down to about 1 arcminute. This corresponds to 0.3 m at a 1 km distance, or to perceiving Venus as a disk under optimal conditions.
A great conjunction is a conjunction of the planets Jupiter and Saturn, when the two planets appear closest together in the sky. Great conjunctions occur approximately every 20 years when Jupiter "overtakes" Saturn in its orbit. They are named "great" for being by far the rarest of the conjunctions between naked-eye planets.
A triple conjunction is an astronomical event when two planets or a planet and a star appear to meet each other three times during a brief period, either in opposition or at the time of inferior conjunction, if an inferior planet is involved. The visible movement of the planet or the planets in the sky appears therefore normally prograde at the first conjunction, retrograde at the second conjunction, and again prograde at the third conjunction.
A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial.
Spacecraft flight dynamics is the application of mechanical dynamics to model how the external forces acting on a space vehicle or spacecraft determine its flight path. These forces are primarily of three types: propulsive force provided by the vehicle's engines; gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag.
The phases of Venus are the variations of lighting seen on the planet's surface, similar to lunar phases. The first recorded observations of them are thought to have been telescopic observations by Galileo Galilei in 1610. Although the extreme crescent phase of Venus has since been observed with the naked eye, there are no indisputable historical pre-telescopic records of it being described or known.
Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.
The semi-analytic planetary theory VSOP is a mathematical model describing long-term changes in the orbits of the planets Mercury to Neptune. The earliest modern scientific model considered only the gravitational attraction between the Sun and each planet, with the resulting orbits being unvarying Keplerian ellipses. In reality, all the planets exert slight forces on each other, causing slow changes in the shape and orientation of these ellipses. Increasingly complex analytical models have been made of these deviations, as well as efficient and accurate numerical approximation methods.
Doppler spectroscopy is an indirect method for finding extrasolar planets and brown dwarfs from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star. As of November 2022, about 19.5% of known extrasolar planets have been discovered using Doppler spectroscopy.
In astronomy, a phase curve describes the brightness of a reflecting body as a function of its phase angle. The brightness usually refers the object's absolute magnitude, which, in turn, is its apparent magnitude at a distance of one astronomical unit from the Earth and Sun.
In astronomy, planetary transits and occultations occur when a planet passes in front of another object, as seen by an observer. The occulted object may be a distant star, but in rare cases it may be another planet, in which case the event is called a mutual planetary occultation or mutual planetary transit, depending on the relative apparent diameters of the objects.
In physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave, with constant frequency.