Kepler-451

Last updated
Kepler-451
Observation data
Epoch J2000        Equinox J2000
Constellation Cygnus
Right ascension 19h 38m 32.612s [1]
Declination +46h 03m 59.14s [1]
Apparent magnitude  (V)12.69 [2]
Characteristics
Spectral type sdBV+dM [3]
Astrometry
Proper motion (μ)RA: 5.225(37)  mas/yr [1]
Dec.: −4.405(42)  mas/yr [1]
Parallax (π)2.4410 ± 0.0316  mas [1]
Distance 1,340 ± 20  ly
(410 ± 5  pc)
Orbit [4]
Period (P)0.125765282(5)  d
Inclination (i)69.45±0.20°
Semi-amplitude (K1)
(primary)
65.7±0.6 km/s
Details
Kepler-451 A
Mass 0.48±0.03 [5]   M
Radius 0.203±0.001 [6]   R
Temperature 29564±106 [5]   K
Age 6±2[ citation needed ]  Gyr
Kepler-451 B
Mass 0.12±0.01 [5]   M
Radius 0.168±0.001 [6]   R
Other designations
Kepler-451, KIC  9472174, TYC  3556-3568-1, 2MASS J19383260+4603591 [2]
Database references
SIMBAD data

Kepler-451 (also known as 2MASS J19383260+4603591 and abbreviated to 2M1938+4603) is an eclipsing post-common envelope binary star system that comprises two stars, a pulsating subdwarf B star and a small red dwarf star. [5] It is located about 1,340 light-years (410 parsecs ) away in the constellation Cygnus. [1] It has been hypothesized to host one or more exoplanets. [6]

Planetary system

Periodic variations in the timing of this system's eclipses were detected in 2015 using data from the Kepler space telescope. It was proposed that these variations are caused by the gravitational effects of a Jupiter-mass planet, Kepler-451b, orbiting with a period of 416 days at a distance of 0.92 AU. [4]

The existence of planets in this system is disputed. An independent study in 2020 found no evidence for Kepler-451b, ruling out the presence of any object of at least Jupiter's mass on the claimed orbit with an inclination greater than 43°. [3] A 2022 study instead proposed a three-planet model, including the originally claimed planet as well as two other planets of similar mass with orbital periods of 43 and 1,800 days. [6]

In general, eclipse timing variations of this type are common in post-common envelope binary systems, and their true cause remains uncertain. [7]

The Kepler-451 planetary system [6]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
d1.76±0.18  MJ 0.20±0.0343.0±0.10
b1.86±0.05  MJ 0.90±0.04406±40.33±0.05<43 [3] °
c1.61±0.14  MJ 2.1±0.21460±900.29±0.07

Related Research Articles

<span class="mw-page-title-main">Subdwarf B star</span> Subdwarf star with spectral type B - extremely hot small star

A B-type subdwarf (sdB) is a kind of subdwarf star with spectral type B. They differ from the typical subdwarf by being much hotter and brighter. They are situated at the "extreme horizontal branch" of the Hertzsprung–Russell diagram. Masses of these stars are around 0.5 solar masses, and they contain only about 1% hydrogen, with the rest being helium. Their radius is from 0.15 to 0.25 solar radii, and their surface temperature is from 20,000 to 40,000 K.

<span class="mw-page-title-main">CM Draconis</span> Star in the constellation Draco

CM Draconis is an eclipsing binary star system 48.5 light-years away in the constellation of Draco. The system consists of two nearly identical red dwarf stars that orbit each other with a period of 1.268 days and a separation of 2.6 million kilometres. Along with two stars in the triple system KOI-126, the stars in CM Draconis are among the lightest stars with precisely measured masses and radii. Consequently, the system plays an important role in testing stellar structure models for very low mass stars. These comparisons find that models underpredict the stellar radii by approximately 5%. This is attributed to consequences of the stars' strong magnetic activity.

<span class="mw-page-title-main">HW Virginis</span> Eclipsing binary star in the constellation Virgo

HW Virginis, abbreviated HW Vir, is an eclipsing binary system, approximately 563 light-years away based on the parallax measured by the Gaia spacecraft, in the constellation of Virgo. The system comprises an eclipsing B-type subdwarf star and red dwarf star. The two stars orbit each other every 0.116795 days.

<span class="mw-page-title-main">Circumbinary planet</span> Planet that orbits two stars instead of one

A circumbinary planet is a planet that orbits two stars instead of one. The two stars orbit each other in a binary system, while the planet typically orbits farther from the center of the system than either of the two stars. In contrast, circumstellar planets in a binary system have stable orbits around one of the two stars, closer in than the orbital distance of the other star. Studies in 2013 showed that there is a strong hint that a circumbinary planet and its stars originate from a single disk.

<span class="mw-page-title-main">NN Serpentis</span> Eclipsing post-common envelope binary star system in the constellation Serpens

NN Serpentis is an eclipsing post-common envelope binary system approximately 1670 light-years away. The system comprises an eclipsing white dwarf and red dwarf. The two stars orbit each other every 0.13 days.

<span class="mw-page-title-main">HU Aquarii</span> Star in the constellation Aquarius

HU Aquarii is an eclipsing binary system approximately 620 light-years away from the Sun, forming a cataclysmic variable of AM Herculis-type. The two stars orbit each other every 2.08 hours and the ultra-short binary system includes an eclipsing white dwarf and red dwarf.

<span class="mw-page-title-main">DP Leonis</span> Star system in the constellation Leo

DP Leonis is a binary star system in the equatorial constellation of Leo. It is a variable star that ranges in apparent visual magnitude from 17.5 down to 19. The system is located at a distance of approximately 990 light-years from the Sun based on parallax. It is a cataclysmic variable star of the AM Herculis-type also known as polars. The system comprises an eclipsing white dwarf and red dwarf in tight orbit and an extrasolar planet. This eclipsing variable was discovered by P. Biermann and associates in 1982 as the optical counterpart to the EINSTEIN X-ray source E1114+182.

Kepler-70, also known as KIC 5807616 and KOI-55, is a star about 3,600 light-years away in the constellation Cygnus, with an apparent visual magnitude of 14.87. This is too faint to be seen with the naked eye; viewing it requires a telescope with an aperture of 40 cm (20 in) or more. A subdwarf B star, Kepler-70 passed through the red giant stage some 18.4 million years ago. In its present-day state, it is fusing helium in its core. Once it runs out of helium it will contract to form a white dwarf. It has a relatively small radius of about 0.2 times the Sun's radius; white dwarfs are generally much smaller. The star may be host to a planetary system with two planets, although later research indicates that this is not in fact the case.

<span class="mw-page-title-main">Kepler-35</span> Binary star system in the constellation Cygnus

Kepler-35 is a binary star system in the constellation of Cygnus. These stars, called Kepler-35A and Kepler-35B have masses of 89% and 81% solar masses respectively, and both are assumed to be of spectral class G. They are separated by 0.176 AU, and complete an eccentric orbit around a common center of mass every 20.73 days.

PH1b, or by its NASA designation Kepler-64b, is an extrasolar planet found in a circumbinary orbit in the quadruple star system Kepler-64. The planet was discovered by two amateur astronomers from the Planet Hunters project of amateur astronomers using data from the Kepler space telescope with assistance of a Yale University team of international astronomers. The discovery was announced on 15 October 2012. It is the first known transiting planet in a quadruple star system, first known circumbinary planet in a quadruple star system, and the first planet in a quadruple star system found. It was the first confirmed planet discovered by PlanetHunters.org. An independent and nearly simultaneous detection was also reported from a revision of Kepler space telescope data using a transit detection algorithm.

<span class="mw-page-title-main">RR Caeli</span> Double star in the constellation Caelum

RR Caeli is an eclipsing binary star in the constellation Caelum. It is 69 light years from Earth.

<span class="mw-page-title-main">KOI-256</span> Double star in the constellation Cygnus

KOI-256 is a double star located in the constellation Cygnus approximately 575 light-years (176 pc) from Earth. While observations by the Kepler spacecraft suggested the system contained a gas giant exoplanet orbiting a red dwarf, later studies determined that KOI-256 was a binary system composed of the red dwarf orbiting a white dwarf.

<span class="mw-page-title-main">NSVS 14256825</span> Eclipsing binary star in the constellation Aquila

NSVS 14256825, also known as V1828 Aquilae, is an eclipsing binary system in the constellation of Aquila. The system comprises a subdwarf OB star and red dwarf star. The two stars orbit each other every 2.648976 hours. Based on the stellar parallax of the system, observed by Gaia, the system is located approximately 2,700 light-years away.

<span class="mw-page-title-main">TOI-1338</span> Binary star system in the constellation Pictor

TOI-1338 is a binary star system located in the constellation Pictor, about 1,320 light-years from Earth. It is orbited by two known circumbinary planets, TOI-1338 b, discovered by the Transiting Exoplanet Survey Satellite (TESS) and BEBOP-1c, discovered by the Binaries Escorted By Orbiting Planets project.

<span class="mw-page-title-main">Post common envelope binary</span> Binary system consisting of a white dwarf and a main sequence star or a brown dwarf

A post-common envelope binary (PCEB) or pre-cataclysmic variable is a binary system consisting of a white dwarf or hot subdwarf and a main-sequence star or a brown dwarf. The star or brown dwarf shared a common envelope with the white dwarf progenitor in the red giant phase. In this scenario the star or brown dwarf loses angular momentum as it orbits within the envelope, eventually leaving a main-sequence star and white dwarf in a short-period orbit. A PCEB will continue to lose angular momentum via magnetic braking and gravitational waves and will eventually begin mass-transfer, resulting in a cataclysmic variable. While there are thousands of PCEBs known, there are only a few eclipsing PCEBs, also called ePCEBs. Even more rare are PCEBs with a brown dwarf as the secondary. A brown dwarf with a mass lower than 20 MJ might evaporate during the common envelope phase and therefore the secondary is supposed to have a mass higher than 20 MJ.

<span class="mw-page-title-main">NY Virginis</span> Binary star in the constellation Virgo

NY Virginis is a binary star about 1,940 light-years away. The primary belongs to the rare class of subdwarf B stars, being former red giants with their hydrogen envelope completely stripped by a stellar companion. The companion is a red dwarf star. The binary nature of NY Virginis was first identified in 1998, and the extremely short orbital period of 0.101016 d, together with brightness variability on the timescale of 200 seconds was noticed, resulting in the identification of the primary star as a B-type subdwarf in 2003. Under a proposed classification scheme for hot subdwarfs it would be class sdB1VII:He1. This non-standard system indicates that it is a "normal" luminosity for a hot subdwarf and that the spectrum is dominated by hydrogen rather than helium.

Kepler-410 is a binary star system. Its primary star, also known as Kepler-410A, is a F-type subgiant star, orbited by the orange dwarf star Kepler-410B on a wide orbit. The companion star was discovered in 2012.

<span class="mw-page-title-main">GG Carinae</span>

GG Carinae is a binary star system in the southern constellation of Carina, abbreviated GG Car. It is a variable star with a brightness that fluctuates around an apparent visual magnitude of 8.67, making it too faint to be visible to the naked eye. The distance to this system is approximately 8,000 light years based on parallax measurements.

References

  1. 1 2 3 4 5 6 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  2. 1 2 "Kepler-451". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2019-05-09.
  3. 1 2 3 Krzesinski, J.; Blokesz, A.; Siwak, M.; Stachowski, G. (2020), "The quest for planets around subdwarfs and white dwarfs from Kepler space telescope fields", Astronomy & Astrophysics, 642: A105, arXiv: 2009.02749 , Bibcode:2020A&A...642A.105K, doi:10.1051/0004-6361/202038121, S2CID   221516872
  4. 1 2 Baran, A. S.; Zola, S.; et al. (May 2015). "Detection of a planet in the sdB + M dwarf binary system 2M 1938+4603". Astronomy & Astrophysics . 577: A146. Bibcode:2015A&A...577A.146B. doi:10.1051/0004-6361/201425392.
  5. 1 2 3 4 Østensen, R. H.; Green, E. M.; et al. (October 2010). "2M1938+4603: a rich, multimode pulsating sdB star with an eclipsing dM companion observed with Kepler". Monthly Notices of the Royal Astronomical Society: Letters . 408 (1): L51–L55. arXiv: 1006.4267 . Bibcode:2010MNRAS.408L..51O. doi:10.1111/j.1745-3933.2010.00926.x.
  6. 1 2 3 4 5 Ekrem Murat Esmer; Baştürk, Özgür; Selim Osman Selam; Aliş, Sinan (2022), "Detection of two additional circumbinary planets around Kepler-451", Monthly Notices of the Royal Astronomical Society, 511 (4): 5207–5216, arXiv: 2202.02118 , Bibcode:2022MNRAS.511.5207E, doi:10.1093/mnras/stac357
  7. Pulley, D.; Sharp, I. D.; Mallett, J.; von Harrach, S. (August 2022). "Eclipse timing variations in post-common envelope binaries: Are they a reliable indicator of circumbinary companions?". Monthly Notices of the Royal Astronomical Society . 514 (4): 5725–5738. arXiv: 2206.06919 . Bibcode:2022MNRAS.514.5725P. doi:10.1093/mnras/stac1676.