Kepler-34

Last updated
Kepler-34
Kepler-34LightCurve.png
A light curve for Kepler-34, plotted from Kepler data [1]
Observation data
Epoch J2000       Equinox J2000
Constellation Cygnus
Right ascension 19h 45m 44.5975s [2]
Declination +44° 38 29.611 [2]
Characteristics
Spectral type G0V / G0V [3]
Astrometry
Proper motion (μ)RA: −3.424(19)  mas/yr [2]
Dec.: −5.033(20)  mas/yr [2]
Parallax (π)0.5529 ± 0.0184  mas [2]
Distance 5,900 ± 200  ly
(1,810 ± 60  pc)
Orbit
PrimaryKepler-34A
CompanionKepler-34B
Period (P)27.7958103 (± 0.0000016) d
Semi-major axis (a)0.22882 (± 0.00019) AU
Eccentricity (e)0.52087 (± 0.00055)
Inclination (i)89.8584 (± 0.0080)°
Details
Kepler-34A
Mass 1.0479 (± 0.0033)  M
Radius 1.1618 (± 0.0030)  R
Temperature 5913 (± 130)  K
Metallicity -0.07 (± 0.15)
Kepler-34B
Mass 1.0208 (± 0.0022)  M
Radius 1.0927 (± 0.0030)  R
Temperature 5867  K
Other designations
KOI-2459, KIC 8572936, 2MASS 19454459+4438296 [3]
Database references
SIMBAD data
KIC data

Kepler-34 is an eclipsing binary star system in the constellation of Cygnus. Both stars have roughly the same mass as the Sun and, like the Sun, both are spectral class G. They are separated by 0.22 AU, and complete an eccentric (e=0.5) [4] orbit around a common center of mass every 27 days.

Planetary system

Kepler-34b is a gas giant that orbits the two stars in the Kepler-34 system. [5] The planet is just over a fifth of Jupiter's mass and has a radius of 0.764 Jupiter radii. The planet completes a somewhat eccentric orbit every 288.822 days from a semimajor axis of just over 1 AU, the largest of any transiting planets at the time of its discovery. Such detection was possible as the planet transits both the stars, thus requiring fewer orbits to confirm the planet.

The majority of circumbinary planets were formed much further away from binary stars. In case of Kepler-34, Kepler-34b has likely the migrated to their current locations due interaction with the massive debris disk. [4] From the physical growth rate of planets and account data on collisions, it is found that Kelper-34b would have grown where we find it now. [6]

Numerical simulation of formation of planetary system Kepler-34 has shown the formation of additional rocky planets in and near the habitable zone is unlikely. [7]

The Kepler-34 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.220  MJ 1.0896288.8220.18290.355° 0.764  RJ

Related Research Articles

<span class="mw-page-title-main">Exoplanet</span> Planet outside the Solar System

An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not then recognized as such. The first confirmation of the detection occurred in 1992. A different planet, first detected in 1988, was confirmed in 2003. As of 1 May 2024, there are 5,662 confirmed exoplanets in 4,169 planetary systems, with 896 systems having more than one planet. The James Webb Space Telescope (JWST) is expected to discover more exoplanets, and to give more insight into their traits, such as their composition, environmental conditions, and potential for life.

<span class="mw-page-title-main">Exomoon</span> Moon beyond the Solar System

An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.

<span class="mw-page-title-main">HD 80606 and HD 80607</span> Binary star system in the constellation Ursa Major

HD 80606 and HD 80607 are two stars comprising a binary star system. They are approximately 217 light-years away in the constellation of Ursa Major. Both stars orbit each other at an average distance of 1,200 astronomical units. The binary system is listed as Struve 1341 in the Struve Catalogue of Double Stars; however, this designation is not in wide use and the system is usually referred to by the HD designations of its constituent stars. An extrasolar planet has been confirmed to orbit HD 80606 in a highly elliptical orbit.

<span class="mw-page-title-main">Methods of detecting exoplanets</span>

Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the exoplanets reported as of January 2024 have been observed directly, with even fewer being resolved from their host star.

This page describes exoplanet orbital and physical parameters.

<span class="mw-page-title-main">Circumbinary planet</span> Planet that orbits two stars instead of one

A circumbinary planet is a planet that orbits two stars instead of one. The two stars orbit each other in a binary system, while the planet typically orbits farther from the center of the system than either of the two stars. In contrast, circumstellar planets in a binary system have stable orbits around one of the two stars, closer in than the orbital distance of the other star. Studies in 2013 showed that there is a strong hint that a circumbinary planet and its stars originate from a single disk.

<span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 May 2024, there are 5,662 confirmed exoplanets in 4,169 planetary systems, with 896 systems having more than one planet. This is a list of the most notable discoveries.

<span class="mw-page-title-main">Kepler-11</span> Sun-like star in the constellation Cygnus

Kepler-11, also designated as 2MASS J19482762+4154328, is a Sun-like star slightly larger than the Sun in the constellation Cygnus, located some 2,110 light years from Earth. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission uses to detect planets that may be transiting their stars. Announced on February 2, 2011, the star system is among the most compact and flattest systems yet discovered. It is the first discovered case of a star system with six transiting planets. All discovered planets are larger than Earth, with the larger ones being about Neptune's size.

<span class="mw-page-title-main">Kepler-16b</span> Gas giant orbiting Kepler-16 star system

Kepler-16b is an exoplanet. It is a Saturn-mass planet consisting of half gas and half rock and ice, and it orbits a binary star, Kepler-16, with a period of 229 days. "[It] is the first confirmed, unambiguous example of a circumbinary planet – a planet orbiting not one, but two stars," said Josh Carter of the Center for Astrophysics | Harvard & Smithsonian, one of the discovery team.

<span class="mw-page-title-main">Kepler-16</span> Binary star system in the constellation Cygnus

Kepler-16 is an eclipsing binary star system in the constellation of Cygnus that was targeted by the Kepler spacecraft. Both stars are smaller than the Sun; the primary, Kepler-16A, is a K-type main-sequence star and the secondary, Kepler-16B, is an M-type red dwarf. They are separated by 0.22 AU, and complete an orbit around a common center of mass every 41 days. The system is host to one known extrasolar planet in circumbinary orbit: the Saturn-sized Kepler-16b.

HAT-P-17 is a K-type main-sequence star about 92.4 parsecs (301 ly) away. It has a mass of about 0.857 ± 0.039 M. It is the host of two planets, HAT-P-17b and HAT-P-17c, both discovered in 2010. A search for a binary companion star using adaptive optics at the MMT Observatory was negative. A candidate companion was detected by a spectroscopic search of high-resolution K band infrared spectra taken at the Keck observatory.

Kepler-34b is a circumbinary planet announced with Kepler-35b. It is a small gas giant that orbits every ~288 days around two stars. Despite the planet's relatively long orbital period, its existence could be confirmed quickly due to transiting both of its host stars.

<span class="mw-page-title-main">Kepler-35</span> Binary star system in the constellation Cygnus

Kepler-35 is a binary star system in the constellation of Cygnus. These stars, called Kepler-35A and Kepler-35B have masses of 89% and 81% solar masses respectively, and both are assumed to be of spectral class G. They are separated by 0.176 AU, and complete an eccentric orbit around a common center of mass every 20.73 days.

Kepler-47 is a binary star system in the constellation Cygnus located about 3,420 light-years away from Earth. The stars have three exoplanets, all of which orbit both stars at the same time, making this a circumbinary system. The first two planets announced are designated Kepler-47b, and Kepler-47c, and the third, later discovery is Kepler-47d. Kepler-47 is the first circumbinary multi-planet system discovered by the Kepler mission. The outermost of the planets is a gas giant orbiting within the habitable zone of the stars. Because most stars are binary, the discovery that multi-planet systems can form in such a system has impacted previous theories of planetary formation.

<span class="mw-page-title-main">Kepler-47c</span> Goldilocks gas giant orbiting Kepler-47 system

Kepler-47c is an exoplanet orbiting the binary star system Kepler-47, the outermost of three such planets discovered by NASA's Kepler spacecraft. The system, also involving two other exoplanets, is located about 3,400 light-years away.

Kepler-38 is a binary star system in the constellation Lyra. These stars, called Kepler-38A and Kepler-38B have masses of 95% and 25% solar masses respectively. The brighter star is spectral class G while the secondary has spectral class M. They are separated by 0.147 AU, and complete an eccentric orbit around a common center of mass every 18.8 days.

<span class="mw-page-title-main">HD 106906 b</span> Candidate exoplanet in the constellation Crux

HD 106906 b is a directly imaged planetary-mass companion and candidate exoplanet orbiting the star HD 106906, in the constellation Crux at about 336 ± 13 light-years (103 ± 4 pc) from Earth. It is estimated to be about eleven times the mass of Jupiter and is located about 738 AU away from its host star. HD 106906 b is an oddity; while its mass estimate is nominally consistent with identifying it as an exoplanet, it appears at a much wider separation from its parent star than thought possible for in-situ formation from a protoplanetary disk.

<span class="mw-page-title-main">Next-Generation Transit Survey</span> Ground-based robotic search for exoplanets

The Next-Generation Transit Survey (NGTS) is a ground-based robotic search for exoplanets. The facility is located at Paranal Observatory in the Atacama desert in northern Chile, about 2 km from ESO's Very Large Telescope and 0.5 km from the VISTA Survey Telescope. Science operations began in early 2015. The astronomical survey is managed by a consortium of seven European universities and other academic institutions from Chile, Germany, Switzerland, and the United Kingdom. Prototypes of the array were tested in 2009 and 2010 on La Palma, and from 2012 to 2014 at Geneva Observatory.

Planet-hosting stars are stars which host planets, therefore forming planetary systems.

<span class="mw-page-title-main">TOI-1338</span> Binary star system in the constellation Pictor

TOI-1338 is a binary star system located in the constellation Pictor, about 1,320 light-years from Earth. It is orbited by two known circumbinary planets, TOI-1338 b, discovered by the Transiting Exoplanet Survey Satellite (TESS) and BEBOP-1c, discovered by the Binaries Escorted By Orbiting Planets project.

References

  1. "Kepler Preview for KPLR008572936-2009259160929". Mikulski Archive for Space Telescopes. Space Telescope Science Institute. Archived from the original on 10 September 2022. Retrieved 10 September 2022.
  2. 1 2 3 4 5 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  3. 1 2 Jean Schneider (2012). "Notes for star Kepler-34(AB)". Extrasolar Planets Encyclopaedia . Archived from the original on 8 April 2012. Retrieved 7 April 2012.
  4. 1 2 Demidova, T. V.; Shevchenko, I. I. (2019), "Simulations of the dynamics of the debris disks in the systems Kepler-16, Kepler-34, and Kepler-35", Astronomy Letters, 44 (2): 119–125, arXiv: 1901.07390 , doi:10.1134/S1063773718010012, S2CID   119226649
  5. Welsh, William F.; et al. (2012). "Transiting circumbinary planets Kepler-34 b and Kepler-35 b". Nature. 481 (7382): 475–479. arXiv: 1204.3955 . Bibcode:2012Natur.481..475W. doi:10.1038/nature10768. PMID   22237021. S2CID   4426222.
  6. "Kepler-34b Helps Explain How Circumbinary Exoplanets Form". sci news. 31 January 2014. Archived from the original on 6 March 2014. Retrieved 23 October 2014.
  7. Macau, E E N.; Domingos, R. C.; Izidoro, A.; Amarante, A.; Winter, O. C.; Barbosa, G. O. (2020), "Earth-size planet formation in the habitable zone of circumbinary stars", Monthly Notices of the Royal Astronomical Society, 494: 1045–1057, arXiv: 2003.11682 , doi:10.1093/mnras/staa757, S2CID   214667061