Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Cygnus |
Right ascension | 19h 24m 38.9616s [1] |
Declination | +55° 28′ 23.3317″ [1] |
Apparent magnitude (V) | 11.65±0.14 |
Characteristics | |
Spectral type | G0IV |
Astrometry | |
Radial velocity (Rv) | -19.740 km/s |
Proper motion (μ) | RA: 6.141 mas/yr Dec.: -27.969 mas/yr |
Parallax (π) | 2.1732 ± 0.0213 mas [1] |
Distance | 1,500 ± 10 ly (460 ± 5 pc) |
Details [2] | |
Mass | 1.19±0.04 M☉ |
Radius | 1.75±0.07 R☉ |
Surface gravity (log g) | 4.03±0.03 cgs |
Temperature | 5920±150 K |
Metallicity | −0.12±0.12 |
Rotational velocity (v sin i) | 12.2±0.7 km/s |
Age | 6+5 −4 Gyr |
Other designations | |
Database references | |
SIMBAD | data |
WASP-48 is a subgiant star about 1400 light-years away. The star is likely older than Sun and slightly depleted in heavy elements. It shows an infrared excess noise of unknown origin, [3] yet has no detectable ultraviolet emissions associated with the starspot activity. [4] The discrepancy may be due to large interstellar absorption of light in interstellar medium for WASP-48. [5] The measurements are compounded by the emission from eclipsing contact binary NSVS-3071474 projected on sky plane nearby, [6] although no true stellar companions were detected by survey in 2015. [7]
The star is rotating rapidly, being spun up by the tides raised by the giant planet on close orbit. [8]
In 2011 a transiting hot Jupiter planet b was detected. [2]
Companion (in order from star) | Mass | Semimajor axis (AU) | Orbital period (days) | Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | 0.98±0.09 MJ | 0.03320±0.00077 | 2.143634±0.000003 | 0 | 80.09+0.69 −0.55 ° | 1.396±0.051 RJ |
WASP-2 is a binary star system in the Delphinus constellation located about 500 light-years away. The primary is magnitude 12 orange dwarf star, orbited by red dwarf star on wide orbit. The star system shows an infrared excess noise of unknown origin.
WASP-8 is a binary star system 294 light-years away. The star system is much younger than the Sun at 300 million to 1.2 billion years age, and is heavily enriched in heavy elements, having nearly twice the concentration of iron compared to the Sun.
WASP-11/HAT-P-10 is a binary star. It is a primary main-sequence orange dwarf star. Secondary is M-dwarf with a projected separation of 42 AU. The system is located about 424 light-years away in the constellation Aries.
WASP-5 is a magnitude 12 G-type main-sequence star located about 1,020 light-years away in the Phoenix constellation. The star is likely older than the Sun, slightly enriched in heavy elements and is rotating rapidly, being spun up by the tides raised by the giant planet on a close orbit.
WASP-21 is a G-type star that is reaching the end of its main sequence lifetime approximately 850 light years from Earth in the constellation of Pegasus. The star is relatively metal-poor, having 40% of heavy elements compared to the Sun. Kinematically, WASP-21 belongs to the thick disk of the Milky Way. It has an exoplanet named WASP-21b.
HD 146389, is a star with a yellow-white hue in the northern constellation of Hercules. The star was given the formal name Irena by the International Astronomical Union in January 2020. It is invisible to the naked eye with an apparent visual magnitude of 9.4 The star is located at a distance of approximately 446 light years from the Sun based on parallax, but is drifting closer with a radial velocity of −9 km/s. The star is known to host one exoplanet, designated WASP-38b or formally named 'Iztok'.
HAT-P-21 is a G-type main-sequence star about 927 light-years away. The star has amount of metals similar to solar abundance. The survey in 2015 has failed to detect any stellar companions. The star is rotating rapidly, being spun up by the tides of giant planet on close orbit.
HAT-P-16 is a F-type main-sequence star about 725 light-years away. The star has a concentration of heavy elements slightly higher than solar abundance, and low starspot activity. The survey in 2015 have failed to find any stellar companions to it. The spectral analysis in 2014 have discovered the HAT-P-16 has a carbon to oxygen molar ratio of 0.58±0.08, close to Sun`s value of 0.55.
WASP-46 is a G-type main-sequence star about 1,210 light-years away. The star is older than the Sun and is strongly depleted in heavy elements compared to the Sun, having just 45% of the solar abundance. Despite its advanced age, the star is rotating rapidly, being spun up by the tides raised by a giant planet on a close orbit.
WASP-35 is a G-type main-sequence star about 660 light-years away. The star's age cannot be well constrained, but it is probably older than the Sun. WASP-35 is similar in concentration of heavy elements compared to the Sun.
Qatar-2 is a K-type main-sequence star about 595 light-years away in the constellation of Virgo. The star is much older than Sun, and has a concentration of heavy elements similar to solar abundance. The star features a numerous and long-lived starspots, and belongs to a peculiar variety of inflated K-dwarfs with strong magnetic activity inhibiting internal convection.
HAT-P-30, also known as WASP-51, is the primary of a binary star system about 700 light-years away. It is a G-type main-sequence star. HAT-P-30 has a similar concentration of heavy elements compared to the Sun.
BD+00 316 is an ordinary star with a close-orbiting planetary companion in the equatorial constellation of Cetus. It is also known as WASP-71 since 2019; BD+00 316 is the stellar identifier from the Bonner Durchmusterung catalogue. With an apparent visual magnitude of 10.56, it is too faint to be visible to the naked eye. This star is located at a distance of 1,160 light-years based on parallax measurements, and is drifting further away with a heliocentric radial velocity of 7.7 km/s.
WASP-59 is a K-type main-sequence star about 379 light-years away. The star's age is essentially unconstrained by observations. WASP-59 is slightly depleted in heavy elements, having 70% of the solar abundance of iron. The star produces extremely low levels of ultraviolet light, indicating an absence of flare activity.
WASP-58 is a binary star system comprising a G-type main-sequence star and a red dwarf about 955 light-years away. WASP-58 is slightly depleted in heavy elements, having 80% of the solar abundance of iron. WASP-58 is much older than the Sun at 12.80+0.20
−2.10 billion years.
WASP-54, also known as BD+00 3088, is a binary star system about 825 light-years away. The primary, WASP-54A, is a F-type main-sequence star, accompanied by the red dwarf WASP-54B on a wide orbit. WASP-54 is depleted in heavy elements, having 55% of the solar abundance of iron. The age of WASP-54 is slightly older than the Sun's at 6.9+1.0
−1.9 billion years.
WASP-69, also named Wouri, is a K-type main-sequence star 164 light-years away. Its surface temperature is 4782±15 K. WASP-69 is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.10±0.01, and is much younger than the Sun at 2 billion years. The data regarding starspot activity of WASP-69 are inconclusive, but spot coverage of the photosphere may be very high.
WASP-84, also known as BD+02 2056, is a G-type main-sequence star 327 light-years away in the constellation Hydra. Its surface temperature is 5350±31 K and is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.05±0.02. It is rich in carbon and depleted of oxygen. WASP-84's age is probably older than the Sun at 8.5+4.1
−5.5 billion years. The star appears to have an anomalously small radius, which can be explained by the unusually high helium fraction or by it being very young.